SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vegge Tejs) "

Sökning: WFRF:(Vegge Tejs)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Amici, Julia, et al. (författare)
  • A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030
  • 2022
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6832 .- 1614-6840. ; 12:17
  • Forskningsöversikt (refereegranskat)abstract
    • This roadmap presents the transformational research ideas proposed by "BATTERY 2030+," the European large-scale research initiative for future battery chemistries. A "chemistry-neutral" roadmap to advance battery research, particularly at low technology readiness levels, is outlined, with a time horizon of more than ten years. The roadmap is centered around six themes: 1) accelerated materials discovery platform, 2) battery interface genome, with the integration of smart functionalities such as 3) sensing and 4) self-healing processes. Beyond chemistry related aspects also include crosscutting research regarding 5) manufacturability and 6) recyclability. This roadmap should be seen as an enabling complement to the global battery roadmaps which focus on expected ultrahigh battery performance, especially for the future of transport. Batteries are used in many applications and are considered to be one technology necessary to reach the climate goals. Currently the market is dominated by lithium-ion batteries, which perform well, but despite new generations coming in the near future, they will soon approach their performance limits. Without major breakthroughs, battery performance and production requirements will not be sufficient to enable the building of a climate-neutral society. Through this "chemistry neutral" approach a generic toolbox transforming the way batteries are developed, designed and manufactured, will be created.
  •  
3.
  • Banerjee, Amitava (författare)
  • Materials Modelling for Energy Harvesting : From Conversion to Application through Storage
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this Ph.D. thesis, ab initio density functional theory along with molecular dynamics and global optimization methods are used to unveil and understand the structures and properties of energy relevant materials. In this connection, the following applications are considered: i. electrocatalyst for solar fuel production through water splitting, ii. hybrid perovskite solar cell for generation of electrical energy and iii. Battery materials to store the electrical energy. The water splitting mechanism in terms of hydrogen evolution and oxygen evolution reactions (HER and OER) on the catalytic surfaces has been envisaged based on the free energy diagram, named reaction coordinate, of the reaction intermediates. The Ti-functionalized two-dimensional (2D) borophene monolayer has been emerged as a promising material for HER and OER mechanisms as compared to the pristine borophene sheet. Further investigation in the series of this noble metal free monolayer catalyst is 2D Al2C monolayer both in form of pristine and functionalized with nitrogen (N), phosphorous (P), boron (B), and sulphur (S). It has been observed that only B substituted Al2C shows very close to thermoneutral, that could be the most promising candidate for HER on functionalized Al2C monolayer. The adsorption of O* intermediate is stronger in S-substituted Al2C, whereas it is less strongly adsorbed on N-substituted Al2C. The subsequent consideration is being the case of n-type doping (W) along with Ti codoped in BiVO4 to enhance the efficiency of BiVO4 photoanode for water splitting. The determined adsorption energy and corresponding Gibbs free energies depict that the Ti site is energetically more favorable for water splitting. Moreover, the Ti site possesses a lower overpotential in the W–Ti codoped sample as compared to the mono-W doped sample. We have also explored the effect of mixed cation and mixed anion substitution in the hybrid perovskite in terms of structural stability, electronic properties and optical response of hybrid perovskite crystal structures. It has been found that the insertion of bromine (Br) into the system could modulate the stability of the Guanidinium lead iodide (GAPbI3) hybrid perovskite.  Moreover, the band gap of the mixed hybrid perovskite is increased with the inclusion of smaller Br anion while replacing partially the larger iodine (I) anion. Finally the electrochemical storage mechanism for Sodium (Na) and lithium (Li) ion insertion has been envisaged in inorganic electrode (eldfellite, NaFe(SO4)2) as well as in more sustainable organic electrode (di-lithium terephthalate, Li2TP). The full desodiation capability of the eldfellite enhances the capacity while the activation energies (higher than 1 eV) for the Na+ ion diffusion for the charged state lower the ionic insertion rate. The key factor as the variation of Li-O coordination in the terephthalate, for the disproportionation redox reaction in Li2TP is also identified.
  •  
4.
  • Baur, Christian, et al. (författare)
  • Improved cycling stability in high-capacity Li-rich vanadium containing disordered rock salt oxyfluoride cathodes
  • 2019
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 7:37, s. 21244-21253
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium-rich transition metal disordered rock salt (DRS) oxyfluorides have the potential to lessen one large bottleneck for lithium ion batteries by improving the cathode capacity. However, irreversible reactions at the electrode/electrolyte interface have so far led to fast capacity fading during electrochemical cycling. Here, we report the synthesis of two new Li-rich transition metal oxyfluorides Li2V0.5Ti0.5O2F and Li2V0.5Fe0.5O2F using the mechanochemical ball milling procedure. Both materials show substantially improved cycling stability compared to Li2VO2F. Rietveld refinements of synchrotron X-ray diffraction patterns reveal the DRS structure of the materials. Based on density functional theory (DFT) calculations, we demonstrate that substitution of V3+ with Ti3+ and Fe3+ favors disordering of the mixed metastable DRS oxyfluoride phase. Hard X-ray photoelectron spectroscopy shows that the substitution stabilizes the active material electrode particle surface and increases the reversibility of the V3+/V5+ redox couple. This work presents a strategy for stabilization of the DRS structure leading to improved electrochemical cyclability of the materials.
  •  
5.
  • Bhowmik, Arghya, et al. (författare)
  • Implications of the BATTERY 2030+ AI-Assisted Toolkit on Future Low-TRL Battery Discoveries and Chemistries
  • 2022
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6832 .- 1614-6840. ; 12:17
  • Forskningsöversikt (refereegranskat)abstract
    • BATTERY 2030+ targets the development of a chemistry neutral platform for accelerating the development of new sustainable high-performance batteries. Here, a description is given of how the AI-assisted toolkits and methodologies developed in BATTERY 2030+ can be transferred and applied to representative examples of future battery chemistries, materials, and concepts. This perspective highlights some of the main scientific and technological challenges facing emerging low-technology readiness level (TRL) battery chemistries and concepts, and specifically how the AI-assisted toolkit developed within BIG-MAP and other BATTERY 2030+ projects can be applied to resolve these. The methodological perspectives and challenges in areas like predictive long time- and length-scale simulations of multi-species systems, dynamic processes at battery interfaces, deep learned multi-scaling and explainable AI, as well as AI-assisted materials characterization, self-driving labs, closed-loop optimization, and AI for advanced sensing and self-healing are introduced. A description is given of tools and modules can be transferred to be applied to a select set of emerging low-TRL battery chemistries and concepts covering multivalent anodes, metal-sulfur/oxygen systems, non-crystalline, nano-structured and disordered systems, organic battery materials, and bulk vs. interface-limited batteries.
  •  
6.
  • Callini, Elsa, et al. (författare)
  • Nanostructured materials for solid-state hydrogen storage : A review of the achievement of COST Action MP1103
  • 2016
  • Ingår i: International journal of hydrogen energy. - : Elsevier. - 0360-3199 .- 1879-3487. ; 41:32, s. 14404-14428
  • Tidskriftsartikel (refereegranskat)abstract
    • In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated network capable to define new and unexplored ways for Solid State Hydrogen Storage by innovative and interdisciplinary research within the European Research Area. An important number of new compounds have been synthesized: metal hydrides, complex hydrides, metal halide ammines and amidoboranes. Tuning the structure from bulk to thin film, nanoparticles and nanoconfined composites improved the hydrogen sorption properties and opened the perspective to new technological applications. Direct imaging of the hydrogenation reactions and in situ measurements under operando conditions have been carried out in these studies. Computational screening methods allowed the prediction of suitable compounds for hydrogen storage and the modeling of the hydrogen sorption reactions on mono-, bi-, and three-dimensional systems. This manuscript presents a review of the main achievements of this Action.
  •  
7.
  • Castelli, Ivano E., et al. (författare)
  • Data Management Plans : the Importance of Data Management in the BIG-MAP Project
  • 2021
  • Ingår i: Batteries & Supercaps. - : John Wiley & Sons. - 2566-6223. ; 4:12, s. 1803-1812
  • Tidskriftsartikel (refereegranskat)abstract
    • Open access to research data is increasingly important for accelerating research. Grant authorities therefore request detailed plans for how data is managed in the projects they finance. We have recently developed such a plan for the EU H2020 BIG-MAP project-a cross-disciplinary project targeting disruptive battery-material discoveries. Essential for reaching the goal is extensive sharing of research data across scales, disciplines and stakeholders, not limited to BIG-MAP and the European BATTERY 2030+ initiative but within the entire battery community. The key challenges faced in developing the data management plan for such a large and complex project were to generate an overview of the enormous amount of data that will be produced, to build an understanding of the data flow within the project and to agree on a roadmap for making all data FAIR (findable, accessible, interoperable, reusable). This paper describes the process we followed and how we structured the plan.
  •  
8.
  • Ebadi, Mahsa (författare)
  • Modelling the Molecular World of Electrolytes and Interfaces : Delving into Li-Metal Batteries
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lithium metal batteries (LMBs) are potential candidates for powering portable electronic devices and for electromobility. However, utilizing the reactive Li metal electrode means tackling serious challenges in terms of safety risks. A better understanding of electrolytes and solid electrolyte interphase (SEI) formation are highly important in order to improve these issues.In this thesis, density functional theory (DFT) and molecular dynamics (MD) are used to explore novel electrolyte systems and the interfacial chemistry of electrolyte/Li metal surfaces. In the first part, the electronic structure and possible decompositions pathways of organic carbonates at the Li metal surface are investigated, which provide information about initial SEI formation. Computed X-ray photoelectron spectroscopy (XPS) for these interfacial compounds is used as a tool to find likely electrolyte decomposition pathways and are supported by direct comparison with the experimental results. The electronic structure and computed XPS spectra of electrolyte solvents and the LiNO3 additive on Li metal by DFT provide atomistic insights into the interphase layer.Solid polymer electrolytes (SPEs) are promising electrolytes to be used with the Li metal electrode. In the second part of the thesis, MD simulations of poly(ethylene oxide) (PEO) doped with LiTFSI salt/Li metal interface demonstrate the impact of the surface on the structure and dynamics of the electrolyte. A new interfacial potential model for MD simulations is also developed for the interactions at the SPE/metal interface, which can better capture this chemical interplay. Moreover, the approach to improve the ionic conductivity of SPEs by adding side-chains to the backbone of polymers is scrutinized through MD simulations of the poly(trimethylene carbonate) (PTMC) system. While providing polymer flexibility, a hindering effects of the side-chains on Li+ ion diffusions through reduced coordination site connectivity is observed.In the final part, different polymer hosts interacting with Li metal are explored, and rapid decomposition of polycarbonates and polyester on the surface is seen. The complexes of these polymers with LiTFSI and LiFSI showed significant changes in the computed electrochemical stability window and salt degradations. Lastly, Li2O was obtained by DFT calculations as a thermodynamically stable layer on the surface of the Li metal oxidized by PEO.The modelling studies performed in this thesis highlight the applicability of these techniques in order to probe the SEI and electrolyte properties in LMBs at the atomistic level.
  •  
9.
  • Edström, Kristina, Professor, 1958- (författare)
  • Battery 2030+ Roadmap
  • 2020
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Climate change is the biggest challenge facing the world today. Europe is committed to achieving a climate-neutral society by 2050, as stated in the European Green Deal.1 The transition towards a climate-neutral Europe requires fundamental changes in the way we generate and use energy. If batteries can be made simultaneously more sustainable, safe, ultrahigh performing, and affordable, they will be true enablers, “accelerating the shift towards sustainable and smart mobility; supplying clean, affordable and secure energy; and mobilizing industry for a clean and circular economy” - all of which are important elements of the UN Sustainable Development Goals.In other words, batteries are a key technology for battling carbon dioxide emissions from the transport, power, and industry sectors. However, to reach our sustainability goals, batteries must exhibit ultra-high performance beyond their capabilities today. Ultra-high performance includes energy and power performance approaching theoretical limits, outstanding lifetime and reliability, and enhanced safety and environmental sustainability. Furthermore, to be commercially successful, these batteries must support scalability that enables cost-effective large-scale production.BATTERY 2030+, is the large-scale, long-term European research initiative with the vision of inventing the sustainable batteries of the future, to enable Europe to reach the goals envisaged in the European Green Deal. BATTERY 2030+ is at the heart of a green and connected society.BATTERY 2030+ will contribute to create a vibrant battery research and development (R&D) community in Europe, focusing on long-term research that will continuously feed new knowledge and technologies throughout the value chain, resulting in new products and innovations. In addition, the initiative will attract talent from across Europe and contribute to ensure access to competences needed for ongoing societal transformation.The BATTERY 2030+ aims are:• to invent ultra-high performance batteries that are safe, affordable, and sustainable, witha long lifetime.• to provide new tools and breakthrough technologies to the European battery industrythroughout the value chain.• to enable long-term European leadership in both existing markets (e.g., transport andstationary storage) and future emerging sectors (e.g., robotics, aerospace, medical devices, and Internet of things)With this roadmap, BATTERY 2030+ advocates research directions based on a chemistry-neutral approach that will allow Europe to reach or even surpass its ambitious battery performance targets set in the European Strategic Energy Technology Plan (SET-Plan)3 and foster innovation throughout the battery value chain.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20
Typ av publikation
tidskriftsartikel (12)
forskningsöversikt (5)
doktorsavhandling (2)
rapport (1)
Typ av innehåll
refereegranskat (16)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Vegge, Tejs (18)
Dominko, Robert (6)
Edström, Kristina, P ... (5)
Younesi, Reza (5)
Castelli, Ivano E. (5)
Grimaud, Alexis (5)
visa fler...
Norby, Poul (5)
Hermansson, Kersti, ... (4)
Fichtner, Maximilian (4)
Ayerbe, Elixabete (4)
Berecibar, Maitane (4)
Bhowmik, Arghya (4)
Clark, Simon (4)
Lorrmann, Henning (4)
Hahlin, Maria (3)
Cekic-Laskovic, Isid ... (3)
Christensen, Rune (3)
Latz, Arnulf (3)
Lyonnard, Sandrine (3)
Meeus, Marcel (3)
Stein, Helge (3)
Tarascon, Jean-Marie (3)
Weil, Marcel (3)
Wenzel, Wolfgang (3)
Berg, Erik (2)
Edström, Kristina (2)
Heuer, Andreas (2)
Amici, Julia (2)
Barboux, Philippe (2)
Bodoardo, Silvia (2)
Diehm, Ralf (2)
Franco, Alejandro A. (2)
Guillet, Nicolas (2)
Heiries, Vincent (2)
Jabbour, Lara (2)
Kallo, Josef (2)
Lovvik, Ole Martin (2)
Perraud, Simon (2)
Placke, Tobias (2)
Punckt, Christian (2)
Raccurt, Olivier (2)
Ruhland, Janna (2)
Sheridan, Edel (2)
Trapp, Victor (2)
Winter, Martin (2)
Jensen, Torben R. (2)
Filinchuk, Yaroslav (2)
Dornheim, Martin (2)
Pasquini, Luca (2)
Cuevas, Fermin (2)
visa färre...
Lärosäte
Uppsala universitet (16)
Stockholms universitet (2)
Kungliga Tekniska Högskolan (1)
Malmö universitet (1)
Chalmers tekniska högskola (1)
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (12)
Teknik (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy