SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ventre S.) "

Sökning: WFRF:(Ventre S.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Esposito, B., et al. (författare)
  • Progress of Design and Development for the ITER Radial Neutron Camera
  • 2022
  • Ingår i: Journal of fusion energy. - : Springer. - 0164-0313 .- 1572-9591. ; 41:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper presents an overview of the design status of the Radial Neutron Camera (RNC), that, together with the Vertical Neutron Camera, will provide, through reconstruction techniques applied to the measured line-integrated neutron fluxes, the time resolved measurement of the ITER neutron and alpha-source profile (i.e. neutron emissivity, neutrons emitted per unit time and volume). The RNC is composed of two subsystems, the In-Port RNC and Ex-Port RNC located, respectively, inside and outside the Plug of Equatorial Port #01. The In-Port subsystem is in a more advanced design stage since it has recently undergone the Final Design Review in the ITER procurement process. The paper describes the diagnostic layout, the interfaces, the measurement capabilities and the main challenges in its realization. Prototyping and testing of neutron detectors and electronics components were carried out and led to the choice of the component solutions that can match the environmental and operational constraints in terms radiation hardness, high temperature and electromagnetic compatibility. The performance of the RNC in terms of neutron emissivity measurement capability was assessed through 1D and 2D reconstruction analysis. It is proven that the neutron emissivity can be reconstructed in real-time within the measurement requirements: 10% accuracy, 10 ms time resolution and a/10 (a = plasma minor radius) space resolution.
  •  
6.
  • Liu, Yueqiang, 1971, et al. (författare)
  • Resistive wall mode control code maturity: progress and specific examples
  • 2010
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 52:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Two issues of the resistive wall mode (RWM) control code maturity are addressed: the inclusion of advanced mode damping physics beyond the ideal MHD description, and the possibility of taking into account the influence of 3D features of the conducting structures on the mode stability and control. Examples of formulations and computational results are given, using the MARS-F/K codes and the CarMa code. The MARS-K calculations for a DIII-D plasma shows that the fast ion contributions, which can give additional drift kinetic stabilization in the perturbative approach, also drive an extra unstable branch of mode in the self-consistent kinetic modelling. The CarMa modelling for the ITER steady state advanced plasmas shows about 20% reduction in the RWM growth rate by the volumetric blanket modules. The multi-mode analysis predicts a weak interaction between the n = 0 and the n = 1 RWMs, due to the 3D ITER walls. The CarMa code is also successfully applied to model the realistic feedback experiments in RFX.
  •  
7.
  • Zucca, M., et al. (författare)
  • Metrology for Inductive Charging of Electric Vehicles (MICEV)
  • 2019
  • Ingår i: 2019 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE). ; , s. 1-6
  • Konferensbidrag (refereegranskat)abstract
    • The European Union funded project MICEV aims at improving the traceability of electrical and magnetic measurement at charging stations and to better assess the safety of this technology with respect to human exposure. The paper describes some limits of the instrumentation used for electrical measurements in the charging stations, and briefly presents two new calibration facilities for magnetic field meters and electric power meters. Modeling approaches for the efficiency and human exposure assessment are proposed. In the latter case, electromagnetic computational codes have been combined with dosimetric computational codes making use of highly detailed human anatomical phantoms in order to establish human exposure modeling real charging stations. Detailed results are presented for light vehicles where, according to our calculations, the concern towards human exposure is limited. Currently, the project has reached half way point (about 18 months) and will end in August 2020.
  •  
8.
  • Caianiello, Eduardo R., et al. (författare)
  • Formalism and Implementations of C-calculus
  • 1989
  • Ingår i: Computational Intelligence, I. - Amsterdam : Elsevier. - 0444873406 ; , s. 15-26
  • Konferensbidrag (refereegranskat)
  •  
9.
  • Villone, F., et al. (författare)
  • Effects of thick blanket modules on the RWM stability in ITER
  • 2010
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 50:12, s. 125011-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we analyse the effects of three-dimensional ITER conducting structures on resistive wall modes (RWMs) growth rates. In particular, a highly detailed description of the thick ITER blanket modules (BMs) is given, with a volumetric mesh including slits, holes, pockets and an anisotropic resistivity to take into account cooling channels. Also other important details of the vacuum vessel are included, such as the outer triangular support, copper cladding, port extensions. To deal with the resulting huge computational model, a fast/parallel implementation of the CarMa code has been successfully developed and used. Both n = 1 (kink-like instability) and n = 0 (axisymmetric vertical instability) RWM are considered. The computational model is validated, on 2D test cases, by the consistency of fits to the growth rate with no-wall and ideal-wall limits calculated with MARS-F. Considering the full 3D model, the detrimental effect of ports on n = 1 growth rates is essentially counteracted by the beneficial effect of BMs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy