SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vikman Petter) "

Sökning: WFRF:(Vikman Petter)

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlqvist, Emma, et al. (författare)
  • Novel subgroups of adult-onset diabetes and their association with outcomes : a data-driven cluster analysis of six variables
  • 2018
  • Ingår i: The Lancet Diabetes and Endocrinology. - 2213-8587 .- 2213-8595. ; 6:5, s. 361-369
  • Tidskriftsartikel (refereegranskat)abstract
    •  BackgroundDiabetes is presently classified into two main forms, type 1 and type 2 diabetes, but type 2 diabetes in particular is highly heterogeneous. A refined classification could provide a powerful tool to individualise treatment regimens and identify individuals with increased risk of complications at diagnosis.MethodsWe did data-driven cluster analysis (k-means and hierarchical clustering) in patients with newly diagnosed diabetes (n=8980) from the Swedish All New Diabetics in Scania cohort. Clusters were based on six variables (glutamate decarboxylase antibodies, age at diagnosis, BMI, HbA1c, and homoeostatic model assessment 2 estimates of β-cell function and insulin resistance), and were related to prospective data from patient records on development of complications and prescription of medication. Replication was done in three independent cohorts: the Scania Diabetes Registry (n=1466), All New Diabetics in Uppsala (n=844), and Diabetes Registry Vaasa (n=3485). Cox regression and logistic regression were used to compare time to medication, time to reaching the treatment goal, and risk of diabetic complications and genetic associations.FindingsWe identified five replicable clusters of patients with diabetes, which had significantly different patient characteristics and risk of diabetic complications. In particular, individuals in cluster 3 (most resistant to insulin) had significantly higher risk of diabetic kidney disease than individuals in clusters 4 and 5, but had been prescribed similar diabetes treatment. Cluster 2 (insulin deficient) had the highest risk of retinopathy. In support of the clustering, genetic associations in the clusters differed from those seen in traditional type 2 diabetes.InterpretationWe stratified patients into five subgroups with differing disease progression and risk of diabetic complications. This new substratification might eventually help to tailor and target early treatment to patients who would benefit most, thereby representing a first step towards precision medicine in diabetes.
  •  
2.
  • Fadista, Joao, et al. (författare)
  • Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism.
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 111:38, s. 13924-13929
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variation can modulate gene expression, and thereby phenotypic variation and susceptibility to complex diseases such as type 2 diabetes (T2D). Here we harnessed the potential of DNA and RNA sequencing in human pancreatic islets from 89 deceased donors to identify genes of potential importance in the pathogenesis of T2D. We present a catalog of genetic variants regulating gene expression (eQTL) and exon use (sQTL), including many long noncoding RNAs, which are enriched in known T2D-associated loci. Of 35 eQTL genes, whose expression differed between normoglycemic and hyperglycemic individuals, siRNA of tetraspanin 33 (TSPAN33), 5'-nucleotidase, ecto (NT5E), transmembrane emp24 protein transport domain containing 6 (TMED6), and p21 protein activated kinase 7 (PAK7) in INS1 cells resulted in reduced glucose-stimulated insulin secretion. In addition, we provide a genome-wide catalog of allelic expression imbalance, which is also enriched in known T2D-associated loci. Notably, allelic imbalance in paternally expressed gene 3 (PEG3) was associated with its promoter methylation and T2D status. Finally, RNA editing events were less common in islets than previously suggested in other tissues. Taken together, this study provides new insights into the complexity of gene regulation in human pancreatic islets and better understanding of how genetic variation can influence glucose metabolism.
  •  
3.
  • Hansson, Björn, et al. (författare)
  • Intact glucose uptake despite deteriorating signaling in adipocytes with high-fat feeding
  • 2018
  • Ingår i: Journal of Molecular Endocrinology. - 0952-5041. ; 60:3, s. 199-211
  • Tidskriftsartikel (refereegranskat)abstract
    • To capture immediate cellular changes during diet-induced expansion of adipocyte cell volume and number, we characterized mature adipocytes during a short-term high-fat diet (HFD) intervention. Male C57BL6/J mice were fed chow diet, and then switched to HFD for 2, 4, 6 or 14 days. Systemic glucose clearance was assessed by glucose tolerance test. Adipose tissue was dissected for RNA-seq and cell size distribution analysis using coulter counting. Insulin response in isolated adipocytes was monitored by glucose uptake assay and Western blotting, and confocal microscopy was used to assess autophagic activity. Switching to HFD was accompanied by an immediate adipocyte size expansion and onset of systemic insulin resistance already after two days, followed by recruitment of new adipocytes. Despite an initially increased non-stimulated and preserved insulin-stimulated glucose uptake, we observed a decreased phosphorylation of insulin receptor substrate-1 (IRS-1) and protein kinase B (PKB). After 14 days of HFD, both the insulin-stimulated phosphorylation of Akt substrate of 160 kDa (AS160) and glucose uptake was blunted. RNA-seq analysis of adipose tissue revealed transient changes in gene expression at day four, including highly significant upregulation of Trp53inp, previously demonstrated to be involved in autophagy. We confirmed increased autophagy, measured as an increased density of LC3-positive puncta and decreased p62 expression after 14 days of HFD. In conclusion, HFD rapidly induced systemic insulin resistance, whereas insulin-stimulated glucose uptake remained intact throughout 6 days of HFD feeding. We also identified autophagy as an early cellular process that potentially influences adipocyte function upon switching to HFD.
  •  
4.
  •  
5.
  • Krus, Ulrika, et al. (författare)
  • The Complement Inhibitor CD59 Regulates Insulin Secretion by Modulating Exocytotic Events.
  • 2014
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 19:5, s. 883-890
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes is triggered by reduced insulin production, caused by genetic and environmental factors such as inflammation originating from the innate immune system. Complement proteins are a component of innate immunity and kill non-self cells by perforating the plasma membrane, a reaction prevented by CD59. Human pancreatic islets express CD59 at very high levels. CD59 is primarily known as a plasma membrane protein in membrane rafts, but most CD59 protein in pancreatic β cells is intracellular. Removing extracellular CD59 disrupts membrane rafts and moderately stimulates insulin secretion, whereas silencing intracellular CD59 markedly suppresses regulated secretion by exocytosis, as demonstrated by TIRF imaging. CD59 interacts with the exocytotic proteins VAMP2 and Syntaxin-1. CD59 expression is reduced by glucose and in rodent diabetes models but upregulated in human diabetic islets, potentially reflecting compensatory reactions. This unconventional action of CD59 broadens the established view of innate immunity in type 2 diabetes.
  •  
6.
  • Nagaraj, Vini, et al. (författare)
  • Complement inhibitor CD55 governs the integrity of membrane rafts in pancreatic beta cells, but plays no role in insulin secretion.
  • 2015
  • Ingår i: Biochemical and Biophysical Research Communications. - : Elsevier BV. - 1090-2104 .- 0006-291X. ; 460:3, s. 518-524
  • Tidskriftsartikel (refereegranskat)abstract
    • CD55 is a glycosylphosphatidylinositol-anchored protein, which inhibits complement activation by acting on the complement C3 convertases. CD55 is widely localized in the cholesterol rich regions of the cell plasma membrane termed membrane rafts. CD55 is attached to these specialized regions via a GPI link on the outer leaflet of the plasma membrane. Membrane rafts anchor many important signaling proteins, which control several cellular functions within the cell. For example, we recently demonstrated that the membrane raft protein and complement inhibitor CD59 also controls insulin secretion by an intracellular mechanism. Therefore, we have in this study aimed at addressing the expression and function of CD55 in pancreatic beta cells. To this end, we observe that CD55 is highly expressed in INS1 832/13 beta cells as well as human pancreatic islets. Diabetic human islets show a tendency for increased expression of CD55 when compared to the healthy controls. Importantly, silencing of CD55 in INS1 832/13 cells does not affect their insulin secretory capacity. On the other hand, silencing of CD55 diminished the intensity of membrane rafts as determined by Atto-SM staining. We hence conclude that CD55 expression is affected by glycemic status in human islets and plays a critical role in maintaining the conserved structure of rafts in pancreatic islets, which is similar to that of the related complement inhibitor CD59. However CD55 does not interfere with insulin secretion in beta cells, which is in sharp contrast to the action of the complement inhibitor CD59.
  •  
7.
  • Ottosson-Laakso, Emilia, et al. (författare)
  • Glucose-induced Changes in Gene Expression in Human Pancreatic Islets - Causes or Consequences of Chronic Hyperglycemia
  • 2017
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 66:12, s. 3013-3028
  • Tidskriftsartikel (refereegranskat)abstract
    • Dysregulation of gene expression in islets from type 2 diabetic patients might be causally involved in the development of hyperglycemia or it could develop as a consequence of hyperglycemia, i.e. glucotoxicity. To separate the genes potentially causally involved in pathogenesis from those likely to be secondary to the hyperglycemia we exposed islets from human donors to normal or high glucose concentrations for 24 hours and analyzed gene expression. We compared these findings with gene expression in islets from donors with normal glucose tolerance (NGT) and hyperglycemia (HG, including T2D). The genes whose expression changed in the same direction after short-term glucose exposure as in T2D were considered most likely to be a consequence of hyperglycemia. Genes whose expression changed in HG but not after short-term glucose exposure, in particular genes that also correlated with insulin secretion, were considered the strongest candidates for causal involvement in T2D. E.g. ERO1LB, DOCK10, IGSF11 and PRR14L were down-regulated in HG and correlated positively with insulin secretion suggesting a protective role while TMEM132C was up-regulated in HG and correlated negatively with insulin secretion suggesting a potential pathogenic role.This study provides a catalogue of gene expression changes in human pancreatic islets after exposure to glucose.
  •  
8.
  • Ansar, Saema, et al. (författare)
  • Cerebrovascular ETB, 5-HT1B and AT1 Receptor Upregulation Correlates with Reduction in Regional CBF after Subarachnoid Hemorrhage.
  • 2007
  • Ingår i: American Journal of Physiology: Heart and Circulatory Physiology. - : American Physiological Society. - 1522-1539 .- 0363-6135. ; 293:6, s. 3750-3758
  • Tidskriftsartikel (refereegranskat)abstract
    • We hypothesize that cerebral ischemia leads to enhanced expression of endothelin (ET), 5-hydroxytryptamine (5-HT), and angiotensin II (ANG II) receptors in the vascular smooth muscle cells. Our aim is to correlate the upregulation of cerebrovascular receptors and the underlying molecular mechanisms with the reduction in regional and global cerebral blood flow (CBF) after subarachnoid hemorrhage (SAH). SAH was induced by injecting 250 µl blood into the prechiasmatic cistern in rats. The cerebral arteries were removed 0, 1, 3, 6, 12, 24, and 48 h after the SAH for functional and molecular studies. The contractile responses to ET-1, 5-carboxamidotryptamine (5-CT), and ANG II were investigated with myograph. The receptor mRNA and protein levels were analyzed by quantitative real-time PCR and immunohistochemistry, respectively. In addition, regional and global CBFs were measured by an autoradiographic method. As a result, SAH resulted in enhanced contractions to ET-1 and 5-CT. ANG II [via ANG II type 1 (AT1) receptors] induced increased contractile responses [in the presence of the ANG II type 2 (AT2) receptor antagonist PD-123319]. In parallel the ETB, 5-HT1B, and AT1 receptor, mRNA and protein levels were elevated by time. The regional and global CBF showed a successive reduction with time after SAH. In conclusion, the results demonstrate for the first time that SAH induces the upregulation of ETB, 5-HT1B, and AT1 receptors in a time-dependent manner both at functional, mRNA, and protein levels. These changes occur in parallel with a successive decrease in CBF. Thus there is a temporal correlation between the changes in receptor expression and CBF reduction, suggesting a linkage.
  •  
9.
  • Ansar, Saema, et al. (författare)
  • ERK1/2 inhibition attenuates cerebral blood flow reduction and abolishes ET(B) and 5-HT(1B) receptor upregulation after subarachnoid hemorrhage in rat.
  • 2006
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 1559-7016 .- 0271-678X. ; 26:Nov 2, s. 846-856
  • Tidskriftsartikel (refereegranskat)abstract
    • Upregulation of endothelin B (ETB) and 5-hydroxytryptamine 1B (5-HT1B) receptors via transcription has been found after experimental subarachnoid hemorrhage (SAH), and this is associated with enhanced phosphorylation of the mitogen-activated protein kinase ( MAPK) extracellular signal-regulated kinase ( ERK1/2). In the present study, we hypothesized that inhibition of ERK1/2 alters the ETB and 5-HT1B receptor upregulation and at the same time prevents the sustained cerebral blood flow (CBF) reduction associated with SAH. The ERK1/2 inhibitor SB386023-b was injected intracisternally in conjunction with and after the induced SAH in rats. At 2 days after the SAH, cerebral arteries were harvested for quantitative real-time polymerase chain reaction, immunohistochemistry and analysis of contractile responses to endothelin-1 (ET-1; ETA and ETB receptor agonist) and 5-carboxamidotryptamine (5-CT; 5-HT1 receptor agonist) in a sensitive myograph. To investigate if ERK1/2 inhibition had an influence on the local and global CBF after SAH, an autoradiographic technique was used. At 48 h after induced SAH, global and regional CBF were reduced by 50%. This reduction was prevented by treatment with SB386023-b. The ERK1/2 inhibition also decreased the maximum contraction elicited by application of ET-1 and 5-CT in cerebral arteries compared with SAH. In parallel, ERK1/2 inhibition downregulated ETB and 5-HT1B receptor messenger ribonucleic acid and protein levels compared with the SAH. Cerebral ischemia after SAH involves vasoconstriction and subsequent reduction in the CBF. The results suggest that ERK1/2 inhibition might be a potential treatment for the prevention of cerebral vasospasm and ischemia associated with SAH.
  •  
10.
  • Ansar, Saema, et al. (författare)
  • Protein kinase C inhibition prevents upregulation of vascular ET(B) and 5-HT(1B) receptors and reverses cerebral blood flow reduction after subarachnoid haemorrhage in rats.
  • 2007
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 1559-7016 .- 0271-678X. ; 27:1, s. 21-32
  • Tidskriftsartikel (refereegranskat)abstract
    • The pathogenesis of cerebral ischaemia after subarachnoid haemorrhage (SAH) still remains elusive. The purpose of the present study was to examine whether specific protein kinas C (PKC) inhibition in rats could alter the transcriptional SAH induced Endothelin (ET) type B and 5-hydroxytryptamine type 1B (5-HT1B) receptor upregulation and prevent the associated cerebral blood flow (CBF) reduction. The PKC inhibitor RO-31-7549 or vehicle was injected intracisternally after the induced SAH in rats (n = 3 to 10 in each groups for each method). The involvement of the PKC isoforms was investigated with Western blot; only PKC delta and PKC alpha subtypes were increased after SAH RO-31-7549 treatment abolished this. At 2 days after the SAH basilar and middle cerebral arteries were harvested and the contractile response to endothelin-1 (ET-1; ETA and ETB receptor agonist) and 5-carboxamidotryptamine (5-CT; 5-HT1B receptor agonist) were investigated with a myograph. The contractile responses to ET-1 and 5-CT were increased (P < 0.05) after SAH compared with sham operated rats. In parallel, the ETB and 5-HT1B receptor mRNA and protein expression were significantly elevated after SAH, as analysed by quantitative real-time polymerase chain reaction and immunohistochemistry, respectively. Administration of RO-31-7549 prevented the upregulated contraction elicited by application of ET-1 and 5-CT in cerebral arteries and kept the ETB and 5-HT1B receptor mRNA and protein levels at pre-SAH levels. Regional and global CBF evaluated by an autoradiographic technique were reduced by 60% 64% after SAH (P < 0.05) and prevented by treatment with RO-31-7549. Our study suggests that PKC plays an important role in the pathogenesis of cerebral ischaemia after SAH.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy