SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vinciguerra S.) "

Sökning: WFRF:(Vinciguerra S.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2017
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:2
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Amati, L., et al. (författare)
  • The THESEUS space mission concept : science case, design and expected performances
  • 2018
  • Ingår i: Advances in Space Research. - : ELSEVIER SCI LTD. - 0273-1177 .- 1879-1948. ; 62:1, s. 191-244
  • Tidskriftsartikel (refereegranskat)abstract
    • THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1 sr) with 0.5-1 arcmin localization, an energy band extending from several MeV down to 0.3 keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7 m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing the main open issues in cosmology such as, e.g., star formation rate and metallicity evolution of the inter-stellar and intra-galactic medium up to redshift similar to 10, signatures of Pop III stars, sources and physics of re-ionization, and the faint end of the galaxy luminosity function. In addition, it will provide unprecedented capability to monitor the X-ray variable sky, thus detecting, localizing, and identifying the electromagnetic counterparts to sources of gravitational radiation, which may be routinely detected in the late '20s/early '30s by next generation facilities like aLIGO/ aVirgo, eLISA, KAGRA, and Einstein Telescope. THESEUS will also provide powerful synergies with the next generation of multi-wavelength observatories (e.g., LSST, ELT, SKA, CTA, ATHENA).
  •  
3.
  • Antonarakis, S. E., et al. (författare)
  • Factor VIII gene inversions in severe hemophilia A : Results of an international consortium study
  • 1995
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 86:6, s. 2206-2212
  • Tidskriftsartikel (refereegranskat)abstract
    • Twenty-two molecular diagnostic laboratories from 14 countries participated in a consortium study to estimate the impact of Factor VIII gene inversions in severe hemophilia A. A total of 2,093 patients with severe hemophilia A were studied; of those, 740 (35%) had a type 1 (distal) factor VIII inversion, and 140 (7%) showed a type 2 (proximal) inversion. In 25 cases, the molecular analysis showed additional abnormal or polymorphic patterns. Ninety-eight percent of 532 mothers of patients with inversions were carriers of the abnormal factor VIII gene; when only mothers of nonfamilial cases were studied, 9 de novo inversions in maternal germ cells ware observed among 225 cases (≃ 1 de novo maternal origin of the inversion in 25 mothers of sporadic cases). When the maternal grandparental origin was examined, the inversions occurred de novo in male germ cells in 69 cases and female germ cells in 1 case. The presence of factor VIII inversions is not a major predisposing factor for the development of factor VIII inhibitors; however, slightly more patients with severe hemophilia A and factor VIII inversions develop inhibitors (130 of 642 [20%]) than patients with severe hemophilia A without inversions (131 of 821 [16%]).
  •  
4.
  • Auffray, C., et al. (författare)
  • COVID-19 and beyond : a call for action and audacious solidarity to all the citizens and nations, it is humanity’s fight
  • 2020
  • Ingår i: F1000 Research. - : F1000 Research Ltd. - 2046-1402. ; 9, s. 1130-18
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) belongs to a subgroup of coronaviruses rampant in bats for centuries. It caused the coronavirus disease 2019 (COVID-19) pandemic. Most patients recover, but a minority of severe cases experience acute respiratory distress or an inflammatory storm devastating many organs that can lead to patient death. The spread of SARS-CoV-2 was facilitated by the increasing intensity of air travel, urban congestion and human contact during the past decades. Until therapies and vaccines are available, tests for virus exposure, confinement and distancing measures have helped curb the pandemic. Vision: The COVID-19 pandemic calls for safeguards and remediation measures through a systemic response. Self-organizing initiatives by scientists and citizens are developing an advanced collective intelligence response to the coronavirus crisis. Their integration forms Olympiads of Solidarity and Health. Their ability to optimize our response to COVID-19 could serve as a model to trigger a global metamorphosis of our societies with far-reaching consequences for attacking fundamental challenges facing humanity in the 21st century. Mission: For COVID-19 and these other challenges, there is no alternative but action. Meeting in Paris in 2003, we set out to "rethink research to understand life and improve health." We have formed an international coalition of academia and industry ecosystems taking a systems medicine approach to understanding COVID-19 by thoroughly characterizing viruses, patients and populations during the pandemic, using openly shared tools. All results will be publicly available with no initial claims for intellectual property rights. This World Alliance for Health and Wellbeing will catalyze the creation of medical and health products such as diagnostic tests, drugs and vaccines that become common goods accessible to all, while seeking further alliances with civil society to bridge with socio-ecological and technological approaches that characterise urban systems, for a collective response to future health emergencies. 
  •  
5.
  • Gomes, CPC, et al. (författare)
  • Catalyzing Transcriptomics Research in Cardiovascular Disease: The CardioRNA COST Action CA17129
  • 2019
  • Ingår i: Non-coding RNA. - : MDPI AG. - 2311-553X. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiovascular disease (CVD) remains the leading cause of death worldwide and, despite continuous advances, better diagnostic and prognostic tools, as well as therapy, are needed. The human transcriptome, which is the set of all RNA produced in a cell, is much more complex than previously thought and the lack of dialogue between researchers and industrials and consensus on guidelines to generate data make it harder to compare and reproduce results. This European Cooperation in Science and Technology (COST) Action aims to accelerate the understanding of transcriptomics in CVD and further the translation of experimental data into usable applications to improve personalized medicine in this field by creating an interdisciplinary network. It aims to provide opportunities for collaboration between stakeholders from complementary backgrounds, allowing the functions of different RNAs and their interactions to be more rapidly deciphered in the cardiovascular context for translation into the clinic, thus fostering personalized medicine and meeting a current public health challenge. Thus, this Action will advance studies on cardiovascular transcriptomics, generate innovative projects, and consolidate the leadership of European research groups in the field.COST (European Cooperation in Science and Technology) is a funding organization for research and innovation networks (www.cost.eu).
  •  
6.
  •  
7.
  • Hamawandi, Bejan, PhD, et al. (författare)
  • Composition Tuning of Nanostructured Binary Copper Selenides through Rapid Chemical Synthesis and their Thermoelectric Property Evaluation
  • 2020
  • Ingår i: Nanomaterials. - : MDPI. - 2079-4991. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced energy consumption and environmentally friendly, abundant constituents are gaining more attention for the synthesis of energy materials. A rapid, highly scalable, and process-temperature-sensitive solution synthesis route is demonstrated for the fabrication of thermoelectric Cu2−xSe. The process relies on readily available precursors and microwave-assisted thermolysis, which is sensitive to reaction conditions; yielding Cu1.8Se at 200 °C and Cu2Se at 250 °C within 6–8 min reaction time. Transmission electron microscopy (TEM) revealed crystalline nature of as-made particles with irregular truncated morphology, which exhibit a high phase purity as identified by X-ray powder diffraction (XRPD) analysis. Temperature-dependent transport properties were characterized via electrical conductivity, Seebeck coefficient, and thermal diffusivity measurements. Subsequent to spark plasma sintering, pure Cu1.8Se exhibited highly compacted and oriented grains that were similar in size in comparison to Cu2Se, which led to its high electrical and low thermal conductivity, reaching a very high power-factor (24 µW/K−2cm−1). Density-of-states (DOS) calculations confirm the observed trends in electronic properties of the material, where Cu-deficient phase exhibits metallic character. The TE figure of merit (ZT) was estimated for the materials, demonstrating an unprecedentedly high ZT at 875 K of 2.1 for Cu1.8Se sample, followed by 1.9 for Cu2Se. Synthetic and processing methods presented in this work enable large-scale production of TE materials and components for niche applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy