SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vindas Marco A.) "

Sökning: WFRF:(Vindas Marco A.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Basic, Dean, et al. (författare)
  • Short- and long-term effects of dietary L-tryptophan supplementation on the neuroendocrine stress response in seawater-reared Atlantic salmon (Salmo salar)
  • 2013
  • Ingår i: Aquaculture. - : Elsevier BV. - 0044-8486 .- 1873-5622. ; 388, s. 8-13
  • Tidskriftsartikel (refereegranskat)abstract
    • The essential amino acid L-tryptophan (Trp) is the immediate precursor of the neurotransmitter serotonin (5-HT). Supplementing Trp through diet has been shown to suppress the neuroendocrine stress response in vertebrates including teleosts. In salmonid fish, adjusting to the social environment as well as habituation to seawater involves the neuroendocrine stress response, suggesting that such environmental factors may modulate the stress-reducing effects of Trp. To date, studies that have investigated the neuroendocrine effects of dietary Trp have only been conducted in rainbow trout (Oncorhynchus mykiss), a salmonid species, under conditions featuring social isolation in the freshwater environment. Here, we address the effects of dietary Trp on post-stress plasma cortisol and hypothalamic monoamines in seawater-adapted Atlantic salmon (Salmo salar), reared at densities relevant for aquaculture. Fish were given feed containing 1, 2, 3 or 4 times the Trp content in normal feed for one week. Subsequently, the fish were reintroduced to feed containing the lowest Trp level, corresponding to standard commercial feed for a number of days prior to exposure to an acute confinement stressor. Basal plasma cortisol levels were lower among non-stressed fish at 1 and 10 days post dietary Trp supplementation. By comparison, stressed fish displayed stimulatory post-stress plasma cortisol responses at 1 and 2 days after the Trp regimen was terminated. However, a reversed pattern was observed among these fish at 10 days after Trp treatment. The overall effects of dietary Trp were more pronounced in dopamine (DA) neurochemistry compared to 5-HT in the hypothalamus. The results demonstrate both short-and long-term effects of elevated dietary Trp on the neuroendocrine stress response. These findings suggest that hypothalamic DA may be more involved than 5-HT in the stress reducing effects of Trp in seawater-adapted Atlantic salmon, reared at densities relevant for aquaculture.
  •  
2.
  • Hoglund, E., et al. (författare)
  • Contrasting Coping Styles Meet the Wall: A Dopamine Driven Dichotomy in Behavior and Cognition
  • 2017
  • Ingår i: Frontiers in Neuroscience. - : Frontiers Media SA. - 1662-453X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Individual variation in the ability to modify previously learned behavior is an important dimension of trait correlations referred to as coping styles, behavioral syndromes or personality. These trait clusters have been shaped by natural selection, and underlying control mechanisms are often conserved throughout vertebrate evolution. In teleost fishes, behavioral flexibility and coping style have been studied in the high (HR) and low-responsive (LR) rainbow trout lines. Generally, proactive LR trout show a behavior guided by previously learned routines, while HR trout show a more flexible behavior relying on environmental cues. In mammals, routine dependent vs. flexible behavior has been connected to variation in limbic dopamine (DA) signaling. Here, we studied the link between limbic DA signaling and individual variation in flexibility in teleost fishes by a reversal learning approach. HR/LR trout were challenged by blocking a learned escape route, previously available during interaction with a large and aggressive conspecific. LR trout performed a higher number of failed escape attempts against the transparent blockage, while HR trout were more able to inhibit the now futile escape impulse. Regionally discrete changes in DA neurochemistry were observed in micro dissected limbic areas of the telencephalon. Most notably, DA utilization in the dorsomedial telencephalon (DM, a suggested amygdala equivalent) remained stable in HR trout in response to reversal learning under acute stress, while increasing from an initially lower level in LR trout. In summary, these results support the view that limbic homologs control individual differences in behavioral flexibility even in non-mammalian vertebrates.
  •  
3.
  • Höglund, Erik, et al. (författare)
  • Dietary L-tryptophan leaves a lasting impression on the brain and the stress response
  • 2017
  • Ingår i: British Journal of Nutrition. - : Cambridge University Press. - 0007-1145 .- 1475-2662. ; 117:10, s. 1351-1357
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparative models suggest that effects of dietary tryptophan (Trp) on brain serotonin (5-hydroxytryptamine; 5-HT) neurochemistry and stress responsiveness are present throughout the vertebrate lineage. Moreover, hypothalamic 5-HT seems to play a central role in control of the neuroendocrine stress axis in all vertebrates. Still, recent fish studies suggest long-term effects of dietary Trp on stress responsiveness, which are independent of hypothalamic 5-HT. Here, we investigated if dietary Trp treatment may result in long-lasting effects on stress responsiveness, including changes in plasma cortisol levels and 5-HT neurochemistry in the telencephalon and hypothalamus of Atlantic salmon. Fish were fed diets containing one, two or three times the Trp content in normal feed for 1 week. Subsequently, fish were reintroduced to control feed and were exposed to acute crowding stress for 1 h, 8 and 21 d post Trp treatment. Generally, acute crowding resulted in lower plasma cortisol levels in fish treated with 3xTrp compared with 1xTrp- and 2xTrp-treated fish. The same general pattern was reflected in telencephalic 5-HTergic turnover, for which 3xTrp-treated fish showed decreased values compared with 2xTrp-treated fish. These long-term effects on post-stress plasma cortisol levels and concomitant 5-HT turnover in the telencephalon lends further support to the fact that the extrahypothalamic control of the neuroendocrine stress response is conserved within the vertebrate lineage. Moreover, they indicate that trophic/structural effects in the brain underlie the effects of dietary Trp treatment on stress reactivity.
  •  
4.
  • Mes, D., et al. (författare)
  • Effects of environmental enrichment on forebrain neural plasticity and survival success of stocked Atlantic salmon
  • 2019
  • Ingår i: Journal of Experimental Biology. - : The Company of Biologists. - 0022-0949 .- 1477-9145. ; 222:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Fish reared for stocking programmes are severely stimulus deprived compared with their wild conspecifics raised under natural conditions. This leads to reduced behavioural plasticity and low post-release survival of stocked fish. Environmental enrichment can have positive effects on important life skills, such as predator avoidance and foraging behaviour, but the neural mechanisms underpinning these behavioural changes are still largely unknown. In this study, juvenile Atlantic salmon (Salmo safer) were reared in an enriched hatchery environment for 7 weeks, after which neurobiological characteristics and post-release survival were compared with those of fish reared under normal hatchery conditions. Using in situ hybridization and qPCR, we quantified the expression of brain derived neurotrophic factor (bdnf) and the neural activity marker dos in telencephalic subregions associated with relational memory, emotional learning and stress reactivity. Aside from lower expression of bdnf in the Dlv (a region associated with relational memory) of enriched salmon, we observed no other significant effects of enrichment in the studied regions. Exposure to an enriched environment increased postrelease survival during a 5 month residence in a natural river by 51%. Thus, we demonstrate that environmental enrichment can improve stocking success of Atlantic salmon parr and that environmental enrichment is associated with changes in bdnf expression in the fish's hippocampus-equivalent structure.
  •  
5.
  • Mes, D., et al. (författare)
  • Neurobiology of Wild and Hatchery-Reared Atlantic Salmon: How Nurture Drives Neuroplasticity
  • 2018
  • Ingår i: Frontiers in Behavioral Neuroscience. - 1662-5153. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Life experiences in the rearing environment shape the neural and behavioral plasticity of animals. In fish stocking practices, the hatchery environment is relatively stimulus deprived and does not optimally prepare fish for release into the wild. While the behavioral differences between wild and hatchery-reared fish have been examined to some extent, few studies have compared neurobiological characteristics between wild and hatchery reared individuals. Here, we compare the expression of immediate early gene cfos and neuroplasticity marker brain-derived neurotrophic factor (bdnf) in telencephalic subregions associated with processing of stimuli in wild and hatchery-reared Atlantic salmon at basal and 30 min post (acute) stress conditions. Using in situ hybridization, we found that the expression level of these markers is highly specific per neuronal region and affected by both the origin of the fish, and exposure to acute stress. Expression of dos was increased by stress in all brain regions and cfos was more highly expressed in the Dlv (functional equivalent to the mammalian hippocampus) of hatchery reared compared to wild fish. Expression of bdnf was higher overall in hatchery fish, while acute stress upregulated bdnf in the Dm (functional equivalent to the mammalian amygdala) of wild, but not hatchery individuals. Our findings demonstrate that the hatchery environment affects neuroplasticity and neural activation in brain regions that are important for learning processes and stress reactivity, providing a neuronal foundation for the behavioral differences observed between wild and hatchery-reared fish.
  •  
6.
  • Vindas, Marco A., et al. (författare)
  • Brain cortisol receptor expression differs in Arctic charr displaying opposite coping styles
  • 2017
  • Ingår i: Physiology and Behavior. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0031-9384 .- 1873-507X. ; 177, s. 161-168
  • Tidskriftsartikel (refereegranskat)abstract
    • Individually consistent behavioral and physiological responses to stressful situations (often referred to as coping styles) has been reported in many animal species. Differences in hypothalamic-pituitary axis reactivity characterize individuals, and it has been proposed that the glucocorticoid (gr) and mineralocorticoid (mr) receptors are fundamental in regulating coping styles. We sorted individuals into reactive and proactive coping styles by collapsing behavioral outputs from net restraint and confinement stress tests in a principal component analysis. We then analyzed plasma cortisol levels, serotonin neurochemistry and the relative mRNA expression of gr1 and mr in stressed individuals per coping style. Proactive fish were characterized as having a lower serotonergic activity and being more active under stress. In addition, proactive fish had higher hypothalamic gr1 and mr abundance and a higher mr/gr1 ratio, compared to reactive fish. We found no significant differences in cortisol or telencephalic mRNA, gr1 and mr expression, or their ratio. Brain MR and GR have been proven to have an important role in the appraisal, coping and adaptation to stressful stimuli, so that a higher expression of these receptors in proactive fish suggests increased tolerance and performance under stress, compared to reactive individuals. We present evidence of a conserved neuroendocrine mechanism associated with coping styles in a fish species which is ecologically very diverse and considered to be the most cold-adapted fish in freshwater. We propose that this may be a first step into exploiting this model in order to better understand climate-change related effects in sub populations and ecophenotypes.
  •  
7.
  • Vindas, Marco A., et al. (författare)
  • Early life stress induces long-term changes in limbic areas of a teleost fish: the role of catecholamine systems in stress coping
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Early life stress (ELS) shapes the way individuals cope with future situations. Animals use cognitive flexibility to cope with their ever-changing environment and this is mainly processed in forebrain areas. We investigated the performance of juvenile gilthead seabream, previously subjected to an ELS regime. ELS fish showed overall higher brain catecholaminergic (CA) signalling and lower brain derived neurotrophic factor (bdnf) and higher cfos expression in region-specific areas. All fish showed a normal cortisol and serotonergic response to acute stress. Brain dopaminergic activity and the expression of the alpha(2A) adrenergic receptor were overall higher in the fish homologue to the lateral septum (Vv), suggesting that the Vv is important in CA system regulation. Interestingly, ELS prevented post-acute stress downregulation of the alpha(2A) receptor in the amygdala homologue (Dm3). There was a lack of post-stress response in the beta(2) adrenergic receptor expression and a downregulation in bdnf in the Dm3 of ELS fish, which together indicate an allostatic overload in their stress coping ability. ELS fish showed higher neuronal activity (cfos) post-acute stress in the hippocampus homologue (Dlv) and the Dm3. Our results show clear long-term effects on limbic systems of seabream that may compromise their future coping ability to environmental challenges.
  •  
8.
  • Vindas, Marco A., et al. (författare)
  • How do individuals cope with stress? : Behavioural, physiological and neuronal differences between proactive and reactive coping styles in fish
  • 2017
  • Ingår i: Journal of Experimental Biology. - : The Company of Biologists. - 0022-0949 .- 1477-9145. ; 220:8, s. 1524-1532
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the use of fish models to study human mental disorders and dysfunctions, knowledge of regional telencephalic responses in non-mammalian vertebrates expressing alternative stress coping styles is poor. As perception of salient stimuli associated with stress coping in mammals is mainly under forebrain limbic control, we tested region-specific forebrain neural (i.e. mRNA abundance and monoamine neurochemistry) and endocrine responses under basal and acute stress conditions for previously characterised proactive and reactive Atlantic salmon. Reactive fish showed a higher degree of the neurogenesis marker proliferating cell nuclear antigen (pcna) and dopamine activity under basal conditions in the proposed hippocampus homologue (Dl) and higher post-stress plasma cortisol levels. Proactive fish displayed higher post-stress serotonergic signalling (i.e. higher serotonergic activity and expression of the 5-HT1A receptor) in the proposed amygdala homologue (Dm), increased expression of the neuroplasticity marker brain-derived neurotropic factor (bdnf) in both Dl and the lateral septum homologue (Vv), as well as increased expression of the corticotropin releasing factor 1 (crf(1)) receptor in the Dl, in line with active coping neuro-profiles reported in the mammalian literature. We present novel evidence of proposed functional equivalences in the fish forebrain with mammalian limbic structures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy