SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vittoz P.) "

Sökning: WFRF:(Vittoz P.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Staude, I. R., et al. (författare)
  • Directional turnover towards larger-ranged plants over time and across habitats
  • 2022
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 25:2, s. 466-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation.
  •  
2.
  • Burli, S., et al. (författare)
  • A common soil temperature threshold for the upper limit of alpine grasslands in European mountains
  • 2021
  • Ingår i: Alpine Botany. - : Springer Science and Business Media LLC. - 1664-2201 .- 1664-221X. ; 131
  • Tidskriftsartikel (refereegranskat)abstract
    • While climatic research about treeline has a long history, the climatic conditions corresponding to the upper limit of closed alpine grasslands remain poorly understood. Here, we propose a climatic definition for this limit, the 'grassline', in analogy to the treeline, which is based on the growing season length and the soil temperature. Eighty-seven mountain summits across ten European mountain ranges, covering three biomes (boreal, temperate, Mediterranean), were inventoried as part of the GLORIA project. Vascular plant cover was estimated visually in 326 plots of 1 x 1 m. Soil temperatures were measured in situ for 2-7 years, from which the length of the growing season and mean temperature were derived. The climatic conditions corresponding to 40% plant cover were defined as the thresholds for alpine grassland. Closed vegetation was present in locations with a mean growing season soil temperature warmer than 4.9 degrees C, or a minimal growing season length of 85 days, with the growing season defined as encompassing days with daily mean >= 1 degrees C. Hence, the upper limit of closed grasslands was associated with a mean soil temperature close to that previously observed at the treeline, and in accordance with physiological thresholds to growth in vascular plants. In contrast to trees, whose canopy temperature is coupled with air temperature, small-stature alpine plants benefit from the soil warmed by solar radiation and consequently, they can grow at higher elevations. Since substrate stability is necessary for grasslands to occur at their climatic limit, the grassline rarely appears as a distinct linear feature.
  •  
3.
  • Gottfried, M., et al. (författare)
  • Continent-wide response of mountain vegetation to climate change
  • 2012
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 2:2, s. 111-115
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate impact studies have indicated ecological fingerprints of recent global warming across a wide range of habitats(1,2). Although these studies have shown responses from various local case studies, a coherent large-scale account on temperature-driven changes of biotic communities has been lacking(3,4). Here we use 867 vegetation samples above the treeline from 60 summit sites in all major European mountain systems to show that ongoing climate change gradually transforms mountain plant communities. We provide evidence that the more cold-adapted species decline and the more warm-adapted species increase, a process described here as thermophilization. At the scale of individual mountains this general trend may not be apparent, but at the larger, continental scale we observed a significantly higher abundance of thermophilic species in 2008, compared with 2001. Thermophilization of mountain plant communities mirrors the degree of recent warming and is more pronounced in areas where the temperature increase has been higher. In view of the projected climate change(5,6) the observed transformation suggests a progressive decline of cold mountain habitats and their biota.
  •  
4.
  • Pauli, H., et al. (författare)
  • Recent Plant Diversity Changes on Europe's Mountain Summits
  • 2012
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 336:6079, s. 353-355
  • Tidskriftsartikel (refereegranskat)abstract
    • In mountainous regions, climate warming is expected to shift species' ranges to higher altitudes. Evidence for such shifts is still mostly from revisitations of historical sites. We present recent (2001 to 2008) changes in vascular plant species richness observed in a standardized monitoring network across Europe's major mountain ranges. Species have moved upslope on average. However, these shifts had opposite effects on the summit floras' species richness in boreal-temperate mountain regions (+3.9 species on average) and Mediterranean mountain regions (-1.4 species), probably because recent climatic trends have decreased the availability of water in the European south. Because Mediterranean mountains are particularly rich in endemic species, a continuation of these trends might shrink the European mountain flora, despite an average increase in summit species richness across the region.
  •  
5.
  • Winkler, M., et al. (författare)
  • The rich sides of mountain summits - a pan-European view on aspect preferences of alpine plants
  • 2016
  • Ingår i: Journal of Biogeography. - : Wiley. - 0305-0270. ; 43:11, s. 2261-2273
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim In the alpine life zone, plant diversity is strongly determined by local topography and microclimate. We assessed the extent to which aspect and its relatedness to temperature affect plant species diversity, and the colonization and disappearance of species on alpine summits on a pan-European scale. Methods Vascular plant species and their percentage cover were recorded in permanent plots in each cardinal direction on 123 summits in 32 regions across Europe. For a subset from 17 regions, resurvey data and 6-year soil temperature series were available. Differences in temperature sum and Shannon index as well as species richness, colonization and disappearance of species among cardinal directions were analysed using linear mixed-effects and generalised mixed-effects models, respectively. Results Temperature sums were higher in east-and south-facing aspects than in the north-facing ones, while the west-facing ones were intermediate; differences were smallest in northern Europe. The patterns of temperature sums among aspects were consistent among years. In temperate regions, thermal differences were reflected by plant diversity, whereas this relationship was weaker or absent on Mediterranean and boreal mountains. Colonization of species was positively related to temperature on Mediterranean and temperate mountains, whereas disappearance of species was not related to temperature. Main conclusions Thermal differences caused by solar radiation determine plant species diversity on temperate mountains. Advantages for plants on eastern slopes may result from the combined effects of a longer diurnal period of radiation due to convection cloud effects in the afternoon and the sheltered position against the prevailing westerly winds. In northern Europe, long summer days and low sun angles can even out differences among aspects. On Mediterranean summits, summer drought may limit species numbers on the warmer slopes. Warmer aspects support a higher number of colonization events. Hence, aspect can be a principal determinant of the pace of climate-induced migration processes.
  •  
6.
  • Dullinger, S., et al. (författare)
  • Weak and variable relationships between environmental severity and small-scale co-occurrence in alpine plant communities
  • 2007
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 95:6, s. 1284-1295
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. The stress gradient hypothesis suggests a shift from predominant competition to facilitation along gradients of increasing environmental severity. This shift is proposed to cause parallel changes from prevailing spatial segregation to aggregation among the species within a community. 2. We used 904 1-m(2) plots, each subdivided into 100 10 x 10 cm, or 25 20 x 20 cm cells, respectively, from 67 European mountain summits grouped into 18 regional altitudinal transects, to test this hypothesized correlation between fine-scale spatial patterns and environmental severity. 3. The data were analysed by first calculating standardized differences between observed and simulated random co-occurrence patterns for each plot. These standardized effect sizes were correlated to indicators of environmental severity by means of linear mixed models. In a factorial design, separate analyses were made for four different indicators of environmental severity (the mean temperature of the coldest month, the temperature sum of the growing season, the altitude above tree line, and the percentage cover of vascular plants in the whole plot), four different species groups (all species, graminoids, herbs, and all growth forms considered as pseudospecies) and at the 10 x 10 cm and 20 x 20 cm grain sizes. 4. The hypothesized trends were generally weak and could only be detected by using the mean temperature of the coldest month or the percentage cover of vascular plants as the indicator of environmental severity. The spatial arrangement of the full species set proved more responsive to changes in severity than that of herbs or graminoids. The expected trends were more pronounced at a grain size of 10 x 10 cm than at 20 x 20 cm. 5. Synthesis. In European alpine plant communities the relationships between small-scale co-occurrence patterns of vascular plants and environmental severity are weak and variable. This variation indicates that shifts in net interactions with environmental severity may differ among indicators of severity, growth forms and scales. Recognition of such variation may help to resolve some of the current debate surrounding the stress gradient hypothesis.
  •  
7.
  • Lembrechts, Jonas J., et al. (författare)
  • SoilTemp : A global database of near-surface temperature
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:11, s. 6616-6629
  • Tidskriftsartikel (refereegranskat)abstract
    • Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
  •  
8.
  • Mazier, Florence, et al. (författare)
  • Pollen productivity estimates and relevant source area of pollen for selected plant taxa in a pasture woodland landscape of the Jura Mountains (Switzerland)
  • 2008
  • Ingår i: Vegetation History and Archaeobotany. - : Springer Science and Business Media LLC. - 0939-6314 .- 1617-6278. ; 17:5, s. 479-495
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract in UndeterminedRelevant source area of pollen (RSAP) and pollen productivity for 11 key taxa characteristic of the pasture woodland landscape of the Jura Mountains, Switzerland, were estimated using pollen assemblages from moss polsters at 20 sites. To obtain robust pollen productivity estimates (PPEs), we used vegetation survey data at a fine spatial-resolution (1 x 1 m(2)) and randomized locations for sampling sites, techniques rarely used in palynology. Three Extended R value (ERV) submodels and three distance-weighting methods for plant abundance calculation were applied. Different combinations of the submodels and distance-weighting methods provide slightly different estimates of RSAP and PPEs. Although ERV submodel 1 using 1/d (d = distance in meters) best fits the dataset, PPE values for heavy pollen types (e.g. Abies) were sensitive to the method used for distance-weighting. Taxon-specific distance-weighting methods, such as Prentice's model, emphasize the intertaxonomic differences in pollen dispersal and deposition, and are thus theoretically sound. For the dataset obtained in this project, Prentice's model was more appropriate than other distance-weighting methods to estimate PPEs. Most of the taxa have PPEs equal to (Fagus, Plantago media and Potentilla-type), or higher (Abies, Picea, Rubiaceae and Trollius europaeus) than Poaceae (PPE = 1). Acer, Cyperaceae, and Plantago montana-type are low pollen producers. This set of PPEs will be useful for reconstructing heterogeneous, mountainous pasture woodland landscapes from fossil pollen records. The RSAP for moss polsters in this semi-open landscape region is ca. 300 m.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy