SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(WAN WENJIAN) "

Search: WFRF:(WAN WENJIAN)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • GUAN, WEN, et al. (author)
  • Frequency tuning behaviour of terahertz quantum cascade lasers revealed by a laser beating scheme
  • 2021
  • In: Optics Express. - 1094-4087 .- 1094-4087. ; 29:14, s. 21269-21279
  • Journal article (peer-reviewed)abstract
    • In the terahertz frequency range, the commercialized spectrometers, such as the Fourier transform infrared and time domain spectroscopies, show spectral resolutions between a hundred megahertz and a few gigahertz. Therefore, the high precision frequency tuning ability of terahertz lasers cannot be revealed by these traditional spectroscopic techniques. In this work, we demonstrate a laser beating experiment to investigate the frequency tuning characteristics of terahertz quantum cascade lasers (QCLs) induced by temperature or drive current. Two terahertz QCLs emitting around 4.2 THz with identical active regions and laser dimensions (150 μm wide and 6 mm long) are employed in the beating experiment. One laser is operated as a frequency comb and the other one is driven at a lower current to emit a single frequency. To measure the beating signal, the single mode laser is used as a fast detector (laser self-detection). The laser beating scheme allows the high precision measurement of the frequency tuning of the single mode terahertz QCL. The experimental results show that in the investigated temperature and current ranges, the frequency tuning coefficients of the terahertz QCL are 6.1 MHz/0.1 K (temperature tuning) and 2.7 MHz/mA (current tuning) that cannot be revealed by a traditional terahertz spectrometer. The laser beating technique shows potential abilities in high precision linewidth measurements of narrow absorption lines and multi-channel terahertz communications.
  •  
2.
  • Lin, Jiajie, et al. (author)
  • Wafer-scale heterogeneous integration InP on trenched Si with a bubble-free interface
  • 2020
  • In: APL Materials. - : AIP Publishing. - 2166-532X. ; 8:5
  • Journal article (peer-reviewed)abstract
    • Heterogeneous integration of compound semiconductors on a Si platform leads to advanced device applications in the field of Si photonics and high frequency electronics. However, the unavoidable bubbles formed at the bonding interface are detrimental for achieving a high yield of dissimilar semiconductor integration by the direct wafer bonding technology. In this work, lateral outgassing surface trenches (LOTs) are introduced to efficiently inhibit the bubbles. It is found that the chemical reactions in InP-Si bonding are similar to those in Si-Si bonding, and the generated gas can escape via the LOTs. The outgassing efficiency is dominated by LOTs' spacing, and moreover, the relationship between bubble formation and the LOT's structure is well described by a thermodynamic model. With the method explored in this work, a 2-in. bubble-free crystalline InP thin film integrated on the Si substrate with LOTs is obtained by the ion-slicing and wafer bonding technology. The quantum well active region grown on this Si-based InP film shows a superior photoemission efficiency, and it is found to be 65% as compared to its bulk counterpart.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view