SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wallgard Elisabet) "

Sökning: WFRF:(Wallgard Elisabet)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kalén, Mattias, et al. (författare)
  • Combination of reverse and chemical genetic screens reveals angiogenesis inhibitors and targets.
  • 2009
  • Ingår i: Chemistry & biology. - : Elsevier BV. - 1879-1301 .- 1074-5521. ; 16:4, s. 432-41
  • Tidskriftsartikel (refereegranskat)abstract
    • We combined reverse and chemical genetics to identify targets and compounds modulating blood vessel development. Through transcript profiling in mice, we identified 150 potentially druggable microvessel-enriched gene products. Orthologs of 50 of these were knocked down in a reverse genetic screen in zebrafish, demonstrating that 16 were necessary for developmental angiogenesis. In parallel, 1280 pharmacologically active compounds were screened in a human cell-based assay, identifying 28 compounds selectively inhibiting endothelial sprouting. Several links were revealed between the results of the reverse and chemical genetic screens, including the serine/threonine (S/T) phosphatases ppp1ca, ppp1cc, and ppp4c and an inhibitor of this gene family; Endothall. Our results suggest that the combination of reverse and chemical genetic screens, in vertebrates, is an efficient strategy for the identification of drug targets and compounds that modulate complex biological systems, such as angiogenesis.
  •  
2.
  • Armulik, Annika, et al. (författare)
  • Pericytes regulate the blood-brain barrier
  • 2010
  • Ingår i: NATURE. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 468:7323, s. 557-U231
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Haller, B K, et al. (författare)
  • Therapeutic efficacy of a DNA vaccine targeting the endothelial tip cell antigen delta-like ligand 4 in mammary carcinoma.
  • 2010
  • Ingår i: Oncogene. - : Springer Science and Business Media LLC. - 1476-5594 .- 0950-9232. ; 29:30, s. 4276-86
  • Tidskriftsartikel (refereegranskat)abstract
    • The Notch ligand delta-like ligand 4 (DLL4) is an essential component expressed by endothelial tip cells during angiogenic sprouting. We have described a conceptually novel therapeutic strategy for targeting tumor angiogenesis and endothelial tip cells based on DNA vaccination against DLL4. Immunization with DLL4-encoding plasmid DNA by in vivo electroporation severely retarded the growth of orthotopically implanted mammary carcinomas in mice by induction of a nonproductive angiogenic response. Mechanistically, vaccination brought about a break in tolerance against the self-antigen, DLL4, as evidenced by the production of inhibitory and inherently therapeutic antibodies against mouse DLL4. Importantly, no evidence for a delayed wound healing response, or for toxicity associated with pharmacological blockade of DLL4 signaling, was noted in mice immunized with the DLL4 vaccine. We have thus developed a well-tolerated DNA vaccination strategy targeting the endothelial tip cells and the antigen DLL4 with proven therapeutic efficacy in mouse models of mammary carcinoma; a disease that has been reported to dramatically induce the expression of DLL4. Conceivably, induction of immunity toward principal mediators of pathological angiogenesis could provide protection against recurrent malignant disease in the adjuvant setting.
  •  
4.
  • Hellström, Mats, et al. (författare)
  • Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis.
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 445:7129, s. 776-80
  • Tidskriftsartikel (refereegranskat)abstract
    • In sprouting angiogenesis, specialized endothelial tip cells lead the outgrowth of blood-vessel sprouts towards gradients of vascular endothelial growth factor (VEGF)-A. VEGF-A is also essential for the induction of endothelial tip cells, but it is not known how single tip cells are selected to lead each vessel sprout, and how tip-cell numbers are determined. Here we present evidence that delta-like 4 (Dll4)-Notch1 signalling regulates the formation of appropriate numbers of tip cells to control vessel sprouting and branching in the mouse retina. We show that inhibition of Notch signalling using gamma-secretase inhibitors, genetic inactivation of one allele of the endothelial Notch ligand Dll4, or endothelial-specific genetic deletion of Notch1, all promote increased numbers of tip cells. Conversely, activation of Notch by a soluble jagged1 peptide leads to fewer tip cells and vessel branches. Dll4 and reporters of Notch signalling are distributed in a mosaic pattern among endothelial cells of actively sprouting retinal vessels. At this location, Notch1-deleted endothelial cells preferentially assume tip-cell characteristics. Together, our results suggest that Dll4-Notch1 signalling between the endothelial cells within the angiogenic sprout serves to restrict tip-cell formation in response to VEGF, thereby establishing the adequate ratio between tip and stalk cells required for correct sprouting and branching patterns. This model offers an explanation for the dose-dependency and haploinsufficiency of the Dll4 gene, and indicates that modulators of Dll4 or Notch signalling, such as gamma-secretase inhibitors developed for Alzheimer's disease, might find usage as pharmacological regulators of angiogenesis.
  •  
5.
  • Henshall, Tanya L, et al. (författare)
  • Notch3 Is Necessary for Blood Vessel Integrity in the Central Nervous System
  • 2015
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - 1079-5642 .- 1524-4636. ; 35:2, s. 409-420
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood-brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3(-/-) mouse on blood vessel integrity in the central nervous system.APPROACH AND RESULTS: Notch3(-/-) mice showed focal disruptions of the blood-brain barrier demonstrated by extravasation of tracers and accompanied by fibrin deposition in the retinal vasculature. This blood-brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 being expressed also in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3(-/-) mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity.CONCLUSIONS: We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood-brain barrier function in the mammalian vasculature.
  •  
6.
  • Takemoto, Minoru, et al. (författare)
  • Large-scale identification of genes implicated in kidney glomerulus development and function.
  • 2006
  • Ingår i: The EMBO journal. - : Wiley. - 0261-4189 .- 1460-2075. ; 25:5, s. 1160-74
  • Tidskriftsartikel (refereegranskat)abstract
    • To advance our understanding of development, function and diseases in the kidney glomerulus, we have established and large-scale sequenced cDNA libraries from mouse glomeruli at different stages of development, resulting in a catalogue of 6053 different genes. The glomerular cDNA clones were arrayed and hybridized against a series of labeled targets from isolated glomeruli, non-glomerular kidney tissue, FACS-sorted podocytes and brain capillaries, which identified over 300 glomerular cell-enriched transcripts, some of which were further sublocalized to podocytes, mesangial cells and juxtaglomerular cells by in situ hybridization. For the earliest podocyte marker identified, Foxc2, knockout mice were used to analyze the role of this protein during glomerular development. We show that Foxc2 controls the expression of a distinct set of podocyte genes involved in podocyte differentiation and glomerular basement membrane maturation. The primary podocyte defects also cause abnormal differentiation and organization of the glomerular vascular cells. We surmise that studies on the other novel glomerulus-enriched transcripts identified in this study will provide new insight into glomerular development and pathomechanisms of disease.
  •  
7.
  • Tammela, Tuomas, et al. (författare)
  • Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation.
  • 2008
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 454:7204, s. 656-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiogenesis, the growth of new blood vessels from pre-existing vasculature, is a key process in several pathological conditions, including tumour growth and age-related macular degeneration. Vascular endothelial growth factors (VEGFs) stimulate angiogenesis and lymphangiogenesis by activating VEGF receptor (VEGFR) tyrosine kinases in endothelial cells. VEGFR-3 (also known as FLT-4) is present in all endothelia during development, and in the adult it becomes restricted to the lymphatic endothelium. However, VEGFR-3 is upregulated in the microvasculature of tumours and wounds. Here we demonstrate that VEGFR-3 is highly expressed in angiogenic sprouts, and genetic targeting of VEGFR-3 or blocking of VEGFR-3 signalling with monoclonal antibodies results in decreased sprouting, vascular density, vessel branching and endothelial cell proliferation in mouse angiogenesis models. Stimulation of VEGFR-3 augmented VEGF-induced angiogenesis and sustained angiogenesis even in the presence of VEGFR-2 (also known as KDR or FLK-1) inhibitors, whereas antibodies against VEGFR-3 and VEGFR-2 in combination resulted in additive inhibition of angiogenesis and tumour growth. Furthermore, genetic or pharmacological disruption of the Notch signalling pathway led to widespread endothelial VEGFR-3 expression and excessive sprouting, which was inhibited by blocking VEGFR-3 signals. Our results implicate VEGFR-3 as a regulator of vascular network formation. Targeting VEGFR-3 may provide additional efficacy for anti-angiogenic therapies, especially towards vessels that are resistant to VEGF or VEGFR-2 inhibitors.
  •  
8.
  • Wallgard, Elisabet (författare)
  • Functional genomics of vascular endothelial cells
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Angiogenesis, the formation of new blood vessels from preexisting ones, is a process involved in normal development as well as in several pathological conditions, such as cancer, ischemic heart disease, wound healing and certain retinal complications. Antiangiogenic targeting is therefore a promising new therapeutic principle. However, few blood vessel-specific drug targets have been identified, and information is still limited about endothelial cell (EC)-specific molecular processes. Here we aimed at identifying novel key players and signaling pathways during angiogenesis, and to determine the EC-specific core transcriptome in vivo. During angiogenesis, specialized endothelial tip cells lead the outgrowth of blood-vessel sprouts towards gradients of vascular endothelial growth factor (VEGF)-A. We found that Delta-like 4 (DLL4)/Notch1 signaling regulated the formation of appropriate numbers of tip cells to control vessel sprouting and branching in the developing postnatal retina. Inhibition of Notch-signaling led to excessive tip cell formation, and increased vascular density. Conversely, activation of Notch-signaling led to fewer tip cells and reduced vessel density. DLL4/Notch1-signaling between ECs therefore restricts tip cell formation in response to VEGF, leading to correct sprouting and branching patterns. We also found that blocking VEGF receptor 3 (VEGFR-3) signaling with antibodies resulted in decreased sprouting, vascular density, vessel branching, and EC proliferation. Antibodies against VEGFR-3 and VEGFR-2 in combination had additive effects. Notch inhibition led to endothelial VEGFR-3 expression and excessive sprouting, which was inhibited by blocking VEGFR-3. These findings suggest that Notch and VEGFR-3 signaling may constitute new targets for anti-angiogenic therapy. In order to identify additional candidate vascular drug targets, we combined publicly available gene expression data with own transcriptional profiles of mouse microvasculature. In this way we identified 58 gene transcripts with broad and specific expression in microvascular endothelium, of which 32 presently lack known functions in vascular biology. 7 of the 32 genes showed considerably enriched expression in the microvasculature, namely: Eltd1, Gpr116, Ramp2, Slc9a3r2, Slc43a3, and NM_023516. The 32 gene products were all predicted to be cell surface expressed, or implicated in cell signaling processes, and are therefore interesting as putative microvascular drug targets. We also identified yet another set of new candidate vascular targets by combining reverse- and chemical genetics. In the reverse genetics screen, 50 genes were knocked down in zebrafish and 16 of these were found to be necessary for developmental angiogenesis. In the chemical genetics screen, 28 compounds targeting 69 proteins selectively inhibited endothelial sprouting. The reverse- and chemical genetics screens identified an overlap of three members of a superfamily of serine/threonine (S/T) protein phosphatases, Ppp1ca, Ppp1cc and Ppp4c, and one compound, Endothall, targeting that family. Treatment of zebrafish with Endothall led to a dose-dependent effect on lumen formation, similar to that seen in zebrafish knockdowns of the identified S/T protein phosphatases. The discoveries made in this study span from detailed insights into specific endothelial signaling pathways to global effects on endothelial gene expression, representing different angles of angiogenesis and vascular biology research. Overall, the results in this study contribute to the understanding of the vasculature and its transcriptome.
  •  
9.
  • Wallgard, Elisabet, et al. (författare)
  • Identification of a core set of 58 gene transcripts with broad and specific expression in the microvasculature.
  • 2008
  • Ingår i: Arteriosclerosis, thrombosis, and vascular biology. - 1524-4636 .- 1079-5642. ; 28:8, s. 1469-76
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Pathological angiogenesis is an integral component of many diseases. Antiangiogenesis and vascular targeting are therefore promising new therapeutic principles. However, few endothelial-specific putative drug targets have been identified, and information is still limited about endothelial-specific molecular processes. Here we aimed at determining the endothelial cell-specific core transcriptome in vivo. METHODS AND RESULTS: Analysis of publicly available microarray data identified a mixed vascular/lung cluster of 132 genes that correlated with known endothelial markers. Filtering against kidney glomerular/nonglomerular and brain vascular/nonvascular microarray profiles separated contaminating lung markers, leaving 58 genes with broad and specific microvascular expression. More than half of these have not previously been linked to endothelial functions or studied in detail before. The endothelial cell-specific expression of a selected subset of these, Eltd1, Gpr116, Ramp2, Slc9a3r2, Slc43a3, Rasip1, and NM_023516, was confirmed by real-time quantitative polymerase chain reaction and/or immunohistochemistry. CONCLUSIONS: We have used a combination of publicly available and own microarray data to identify 58 gene transcripts with broad yet specific expression in microvascular endothelium. Most of these have unknown functions, but many of them are predicted to be cell surface expressed or implicated in cell signaling processes and should therefore be explored as putative microvascular drug targets.
  •  
10.
  • Wallgard, Elisabet, et al. (författare)
  • Paladin (X99384) is expressed in the vasculature and shifts from endothelial to vascular smooth muscle cells during mouse development
  • 2012
  • Ingår i: Developmental Dynamics. - : Wiley. - 1058-8388 .- 1097-0177. ; 241:4, s. 770-786
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Angiogenesis is implicated in many pathological conditions. The role of the proteins involved remains largely unknown, and few vascular-specific drug targets have been discovered. Previously, in a screen for angiogenesis regulators, we identified Paladin (mouse: X99384, human: KIAA1274), a protein containing predicted S/T/Y phosphatase domains.Results: We present a mouse knockout allele for Paladin with a beta-galactosidase reporter, which in combination with Paladin antibodies demonstrate that Paladin is expressed in the vasculature. During mouse embryogenesis, Paladin is primarily expressed in capillary and venous endothelial cells. In adult mice Paladin is predominantly expressed in arterial pericytes and vascular smooth muscle cells. Paladin also displays vascular-restricted expression in human brain, astrocytomas, and glioblastomas.Conclusions: Paladin, a novel putative phosphatase, displays a dynamic expression pattern in the vasculature. During embryonic stages it is broadly expressed in endothelial cells, while in the adult it is selectively expressed in arterial smooth muscle cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (9)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (9)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Wallgard, Elisabet (10)
Hellström, Mats (6)
He, Liqun (5)
Betsholtz, Christer (4)
Kalén, Mattias (3)
Lindblom, Per (2)
visa fler...
Betsholtz, Christer, ... (2)
Samuelsson, Tore, 19 ... (2)
Armulik, Annika (2)
Genove, Guillem (2)
Nisancioglu, Maya H. (2)
Norlin, Jenny (2)
Alitalo, Kari (2)
Mostad, Petter, 1964 (1)
Isoniemi, Helena (1)
Mäkinen, Taija (1)
Lundin, Samuel B, 19 ... (1)
Rossant, Janet (1)
Larsson, Erik, 1975 (1)
Johansson, Bengt R, ... (1)
Pietras, K (1)
Asker, Noomi, 1968 (1)
Asp, Julia, 1973 (1)
Niaudet, Colin (1)
Keller, Annika (1)
Dimberg, Anna (1)
Lendahl, Urban (1)
Jin, Shaobo (1)
Mae, Maarja (1)
Strittmatter, Karin (1)
Tammela, Tuomas (1)
Zarkada, Georgia (1)
Nilsson, Ann-Katrin (1)
Quaggin, Susan E. (1)
Bondjers, Cecilia, 1 ... (1)
Miura, Naoyuki (1)
Karlsson-Lindahl, Li ... (1)
Gerhardt, Holger (1)
Lindahl, Per, 1967 (1)
Takemoto, Minoru (1)
Ylä-Herttuala, Seppo (1)
Bråve, A (1)
Sunkari, V. G. (1)
Catrina, S. B. (1)
Eichmann, Anne (1)
Christofori, Gerhard (1)
Pontén, Fredrik C (1)
Tryggvason, Karl (1)
Pytowski, Bronislaw (1)
Patrakka, Jaakko (1)
visa färre...
Lärosäte
Karolinska Institutet (9)
Uppsala universitet (7)
Göteborgs universitet (5)
Chalmers tekniska högskola (1)
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (3)
Medicin och hälsovetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy