SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weimerskirch Henri) "

Sökning: WFRF:(Weimerskirch Henri)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carneiro, Ana P. B., et al. (författare)
  • A framework for mapping the distribution of seabirds by integrating tracking, demography and phenology
  • 2020
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 57:3, s. 514-525
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification of geographic areas where the densities of animals are highest across their annual cycles is a crucial step in conservation planning. In marine environments, however, it can be particularly difficult to map the distribution of species, and the methods used are usually biased towards adults, neglecting the distribution of other life-history stages even though they can represent a substantial proportion of the total population. Here we develop a methodological framework for estimating population-level density distributions of seabirds, integrating tracking data across the main life-history stages (adult breeders and non-breeders, juveniles and immatures). We incorporate demographic information (adult and juvenile/immature survival, breeding frequency and success, age at first breeding) and phenological data (average timing of breeding and migration) to weight distribution maps according to the proportion of the population represented by each life-history stage. We demonstrate the utility of this framework by applying it to 22 species of albatrosses and petrels that are of conservation concern due to interactions with fisheries. Because juveniles, immatures and non-breeding adults account for 47%-81% of all individuals of the populations analysed, ignoring the distributions of birds in these stages leads to biased estimates of overlap with threats, and may misdirect management and conservation efforts. Population-level distribution maps using only adult distributions underestimated exposure to longline fishing effort by 18%-42%, compared with overlap scores based on data from all life-history stages. Synthesis and applications. Our framework synthesizes and improves on previous approaches to estimate seabird densities at sea, is applicable for data-poor situations, and provides a standard and repeatable method that can be easily updated as new tracking and demographic data become available. We provide scripts in the R language and a Shiny app to facilitate future applications of our approach. We recommend that where sufficient tracking data are available, this framework be used to assess overlap of seabirds with at-sea threats such as overharvesting, fisheries bycatch, shipping, offshore industry and pollutants. Based on such an analysis, conservation interventions could be directed towards areas where they have the greatest impact on populations.
  •  
2.
  • Jones, Owen R., et al. (författare)
  • Senescence rates are determined by ranking on the fast-slow life-history continuum
  • 2008
  • Ingår i: Ecology Letters. - : Wiley. - 1461-023X .- 1461-0248. ; 11:7, s. 664-673
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparative analyses of survival senescence by using life tables have identified generalizations including the observation that mammals senesce faster than similar-sized birds. These generalizations have been challenged because of limitations of life-table approaches and the growing appreciation that senescence is more than an increasing probability of death. Without using life tables, we examine senescence rates in annual individual fitness using 20 individual-based data sets of terrestrial vertebrates with contrasting life histories and body size. We find that senescence is widespread in the wild and equally likely to occur in survival and reproduction. Additionally, mammals senesce faster than birds because they have a faster life history for a given body size. By allowing us to disentangle the effects of two major fitness components our methods allow an assessment of the robustness of the prevalent life-table approach. Focusing on one aspect of life history - survival or recruitment - can provide reliable information on overall senescence.
  •  
3.
  • Keogan, Katharine, et al. (författare)
  • Global phenological insensitivity to shifting ocean temperatures among seabirds
  • 2018
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 8:4, s. 313-318
  • Tidskriftsartikel (refereegranskat)abstract
    • Reproductive timing in many taxa plays a key role in determining breeding productivity(1), and is often sensitive to climatic conditions(2). Current climate change may alter the timing of breeding at different rates across trophic levels, potentially resulting in temporal mismatch between the resource requirements of predators and their prey(3). This is of particular concern for higher-trophic-level organisms, whose longer generation times confer a lower rate of evolutionary rescue than primary producers or consumers(4). However, the disconnection between studies of ecological change in marine systems makes it difficult to detect general changes in the timing of reproduction(5). Here, we use a comprehensive meta-analysis of 209 phenological time series from 145 breeding populations to show that, on average, seabird populations worldwide have not adjusted their breeding seasons over time (-0.020 days yr(-1)) or in response to sea surface temperature (SST) (-0.272 days degrees C-1) between 1952 and 2015. However, marked between-year variation in timing observed in resident species and some Pelecaniformes and Suliformes (cormorants, gannets and boobies) may imply that timing, in some cases, is affected by unmeasured environmental conditions. This limited temperature-mediated plasticity of reproductive timing in seabirds potentially makes these top predators highly vulnerable to future mismatch with lower-trophic-level resources(2).
  •  
4.
  • Krishnan, Krishnamoorthy, et al. (författare)
  • The role of wingbeat frequency and amplitude in flight power
  • 2022
  • Ingår i: Journal of the Royal Society Interface. - : The Royal Society. - 1742-5689 .- 1742-5662. ; 19:193
  • Tidskriftsartikel (refereegranskat)abstract
    • Body-mounted accelerometers provide a new prospect for estimating power use in flying birds, as the signal varies with the two major kinematic determinants of aerodynamic power: wingbeat frequency and amplitude. Yet wingbeat frequency is sometimes used as a proxy for power output in isolation. There is, therefore, a need to understand which kinematic parameter birds vary and whether this is predicted by flight mode (e.g. accelerating, ascending/descending flight), speed or morphology. We investigate this using high-frequency acceleration data from (i) 14 species flying in the wild, (ii) two species flying in controlled conditions in a wind tunnel and (iii) a review of experimental and field studies. While wingbeat frequency and amplitude were positively correlated, R 2 values were generally low, supporting the idea that parameters can vary independently. Indeed, birds were more likely to modulate wingbeat amplitude for more energy-demanding flight modes, including climbing and take-off. Nonetheless, the striking variability, even within species and flight types, highlights the complexity of describing the kinematic relationships, which appear sensitive to both the biological and physical context. Notwithstanding this, acceleration metrics that incorporate both kinematic parameters should be more robust proxies for power than wingbeat frequency alone.
  •  
5.
  • Saether, Bernt-Erik, et al. (författare)
  • Demographic routes to variability and regulation in bird populations
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • There is large interspecific variation in the magnitude of population fluctuations, even among closely related species. The factors generating this variation are not well understood, primarily because of the challenges of separating the relative impact of variation in population size from fluctuations in the environment. Here, we show using demographic data from 13 bird populations that magnitudes of fluctuations in population size are mainly driven by stochastic fluctuations in the environment. Regulation towards an equilibrium population size occurs through density-dependent mortality. At small population sizes, population dynamics are primarily driven by environment-driven variation in recruitment, whereas close to the carrying capacity K, variation in population growth is more strongly influenced by density-dependent mortality of both juveniles and adults. Our results provide evidence for the hypothesis proposed by Lack that population fluctuations in birds arise from temporal variation in the difference between density-independent recruitment and density-dependent mortality during the non-breeding season.
  •  
6.
  •  
7.
  • Sztukowski, Lisa A., et al. (författare)
  • Tracking reveals limited interactions between Campbell Albatross and fisheries during the breeding season
  • 2017
  • Ingår i: Journal of Ornithology = Journal fur Ornithologie. - : Springer. - 0021-8375 .- 1439-0361. ; 158:3, s. 725-735
  • Tidskriftsartikel (refereegranskat)abstract
    • Fisheries-related mortality has been influential in driving global declines in seabird populations. Understanding the overlap between seabird distribution and fisheries is one important element in assessing bycatch risk, and may be achieved by tracking the movements of individual birds and fishing vessels. Here, we assess the spatiotemporal overlap between the vulnerable Campbell Albatross Thalassarche impavida and large (>28 m) commercial fishing boats in New Zealand’s Exclusive Economic Zone (EEZ). We used a novel analytical approach, bivariate Gaussian bridge movement modelling, to compute spatiotemporal utilization distributions of bird-borne global positioning system (GPS) loggers and data from the Vessel Monitoring System. We tracked birds for 28,815 h during incubation and chick brooding, with half of this time spent within New Zealand’s EEZ, utilizing 6.7% of the available area. However, there was no evidence that albatrosses and fishing vessels were in the same location simultaneously. We accounted for the broader ecological footprint of fishing vessels by calculating the distance between GPS-fix locations for albatrosses and fishing vessels, revealing that albatrosses were within 30 km of fishing vessels in 8.4% of foraging trips. This highlights differences in estimated fine-scale spatiotemporal overlaps which may be due to the distance between albatrosses and vessels or the methods used. Overall, the low levels of spatial overlap could be a result of Campbell Albatross’ preference for foraging in areas without fishing activity or competitive exclusion by other species. Our results reinforce the importance of multi-scale, temporally explicit, and multi-national approaches to risk assessment, as Campbell Albatrosses spend approximately half of their time foraging outside New Zealand’s EEZ.
  •  
8.
  • Åkesson, Susanne, et al. (författare)
  • Evidence for Sex-Segregated Ocean Distributions of First-Winter Wandering Albatrosses at Crozet Islands
  • 2014
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The highly mobile wandering albatrosses (Diomedea exulans) are adapted to navigate the extreme environment of the Southern Ocean and return to isolated islands to breed. Each year they cover several hundreds of thousands of kilometers during travels across the sea. Little is known about the dispersal flights and migration of young albatrosses. We tracked, by satellite telemetry, the departure dispersal of 13 juvenile wandering albatrosses from the Crozet Islands and compared them with tracks of 7 unrelated adults during the interbreeding season. We used the satellite tracks to identify different behavioural steps of the inherited migration program used by juvenile wandering albatrosses during their first solo-migration. Our results show that the juvenile wandering albatrosses from Crozet Islands moved to sex-specific foraging zones of the ocean using at departures selectively the wind. The results suggest that the inherited migration program used by the juvenile wandering albatrosses encode several distinct steps, based on inherited preferred departure routes, differences in migration distance between sexes, and selective use of winds. During long transportation flights the albatrosses were influenced by winds and both adult and juveniles followed approximate loxodrome (rhumbline) routes coinciding with the foraging zone and the specific latitudes of their destination areas. During the long segments of transportation flights across open seas the juveniles selected routes at more northerly latitudes than adults.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy