SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weisskopf Martin) "

Sökning: WFRF:(Weisskopf Martin)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Soffitta, Paolo, et al. (författare)
  • XIPE : the X-ray imaging polarimetry explorer
  • 2013
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 36:3, s. 523-567
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 % in the 2-10 keV band in 10(5) s for pointed observations, and 0.6 % for an X10 class solar flare in the 15-35 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of View of 14.7 arcmin x 14.7 arcmin. The spectral resolution is 20 % at 6 keV and the time resolution is 8 mu s. The imaging capabilities of the JET-X optics and of the GPD have been demonstrated by a recent calibration campaign at PANTER X-ray test facility of the Max-Planck-Institut fur extraterrestrische Physik (MPE, Germany). XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil). The data policy is organized with a Core Program that comprises three months of Science Verification Phase and 25 % of net observing time in the following 2 years. A competitive Guest Observer program covers the remaining 75 % of the net observing time.
  •  
2.
  • Svoboda, Jiří, et al. (författare)
  • Dramatic Drop in the X-Ray Polarization of Swift J1727.8–1613 in the Soft Spectral State
  • 2024
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 966:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Black hole X-ray binaries exhibit different spectral and timing properties in different accretion states. The X-ray outburst of a recently discovered and extraordinarily bright source, Swift J1727.8–1613, has enabled the first investigation of how the X-ray polarization properties of a source evolve with spectral state. The 2–8 keV polarization degree was previously measured by the Imaging X-ray Polarimetry Explorer (IXPE) to be ≈4% in the hard and hard intermediate states. Here we present new IXPE results taken in the soft state, with the X-ray flux dominated by the thermal accretion disk emission. We find that the polarization degree has dropped dramatically to ≲1%. This result indicates that the measured X-ray polarization is largely sensitive to the accretion state and the polarization fraction is significantly higher in the hard state when the X-ray emission is dominated by upscattered radiation in the X-ray corona. The combined polarization measurements in the soft and hard states disfavor a very high or low inclination of the system.
  •  
3.
  • Zane, Silvia, et al. (författare)
  • The on-board calibration system of the X-ray Imaging Polarimetry Explorer (XIPE)
  • 2016
  • Ingår i: SPACE TELESCOPES AND INSTRUMENTATION 2016. - : SPIE - International Society for Optical Engineering. - 9781510601895
  • Konferensbidrag (refereegranskat)abstract
    • The calibration system for XIPE is aimed at providing a way to check and correct possible variations of performance of the Gas Pixel Detector during the three years of operation in orbit (plus two years of possible extended operation), while facilitating the observation of the celestial sources. This will be performed by using a filter wheel with a large heritage having a set of positions for the calibration and the observation systems. In particular, it will allow for correcting possible gain variation, for measuring the modulation factor using a polarized source, for removing non interesting bright sources in the field of view and for observing very bright celestial sources. The on-board calibration system is composed of three filter wheels, one for each detector and it is expected to operate for a small number of times during the year. Moreover, since it operates once at a time, within the observation mode, it allows for simultaneous calibration and acquisition from celestial sources on different detectors. In this paper we present the scope and the requirements of the on-board calibration system, its design, and a description of its possible use in space.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy