SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weng Jianping) "

Sökning: WFRF:(Weng Jianping)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bompada, Pradeep, et al. (författare)
  • Epigenome-Wide Histone Acetylation Changes in Peripheral Blood Mononuclear Cells in Patients with Type 2 Diabetes and Atherosclerotic Disease
  • 2021
  • Ingår i: Biomedicines. - : MDPI AG. - 2227-9059. ; 9:12
  • Tidskriftsartikel (refereegranskat)abstract
    • There is emerging evidence of an association between epigenetic modifications, glycemic control and atherosclerosis risk. In this study, we mapped genome-wide epigenetic changes in patients with type 2 diabetes (T2D) and advanced atherosclerotic disease. We performed chromatin immunoprecipitation sequencing (ChIP-seq) using a histone 3 lysine 9 acetylation (H3K9ac) mark in peripheral blood mononuclear cells from patients with atherosclerosis with T2D (n = 8) or without T2D (ND, n = 10). We mapped epigenome changes and identified 23,394 and 13,133 peaks in ND and T2D individuals, respectively. Out of all the peaks, 753 domains near the transcription start site (TSS) were unique to T2D. We found that T2D in atherosclerosis leads to an H3K9ac increase in 118, and loss in 63 genomic regions. Furthermore, we discovered an association between the genomic locations of significant H3K9ac changes with genetic variants identified in previous T2D GWAS. The transcription factor 7-like 2 (TCF7L2) rs7903146, together with several human leukocyte antigen (HLA) variants, were among the domains with the most dramatic changes of H3K9ac enrichments. Pathway analysis revealed multiple activated pathways involved in immunity, including type 1 diabetes. Our results present novel evidence on the interaction between genetics and epigenetics, as well as epigenetic changes related to immunity in patients with T2D and advanced atherosclerotic disease.
  •  
2.
  • Jiang, Ziyu, et al. (författare)
  • HLA class I genes modulate disease risk and age at onset together with DR-DQ in Chinese patients with insulin-requiring type 1 diabetes
  • 2021
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 64:9, s. 2026-2036
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: The study aimed to investigate the effects of HLA class I genes on susceptibility to type 1 diabetes with different onset ages, in addition to the well-established effects of HLA class II genes. Methods: A total of 361 patients with type 1 diabetes (192 patients with onset <18 years and 169 patients with onset ≥18 years) and 500 healthy control participants from China were enrolled and genotyped for the HLA-A, -B, -C, -DQA1, -DQB1 and -DRB1 genes using next-generation sequencing. Results: The susceptible DR3 (β = −0.09, p = 0.0009) and DR4-DQ8 (β = −0.13, p = 0.0059) haplotypes were negatively associated with onset age, while the protective DR11 (β = 0.21, p = 0.0314) and DR12 (β = 0.27, p < 0.0001) haplotypes were positively associated with onset age. After adjustment for linkage disequilibrium with DR-DQ haplotypes, A*11:01:01 was positively associated with onset age (β = 0.06, p = 0.0370), while the susceptible C*15:02:01 was negatively associated with onset age (β = −0.21, p = 0.0050). The unit for β was double square-root (fourth root) transformed years of change in onset age associated with per copy of the HLA haplotype/allele. In addition, B*46:01:01 was protective (OR 0.41, 0.46; pc [corrected for multiple comparisons] = 0.0044, 0.0040), whereas A*24:02:01 (OR 2.71, 2.25; pc = 0.0003, 0.0002) and B*54:01:01 (OR 3.96, 3.79; pc = 0.0018, 0.0004) were predisposing in both the <18 group and the ≥18 group compared with healthy control participants. In the context of DR4-DQ4, A*11:01:01 (61.29% vs 28.26%, pc = 0.0144) was increased while the predisposing A*24:02:01 (19.35% vs 47.83%, pc = 0.0403) was decreased in patients with onset ≥18 years when compared with patients with onset <18 years. Conclusions/interpretation: In addition to DR-DQ haplotypes, novel HLA class I alleles were detected to play a role in susceptibility to type 1 diabetes with different onset ages, which could improve the understanding of disease heterogeneity and has implications for the design of future studies. Graphical abstract: [Figure not available: see fulltext.].
  •  
3.
  •  
4.
  • Liang, Hua, et al. (författare)
  • Recognition of maturity-onset diabetes of the young in China
  • 2021
  • Ingår i: Journal of Diabetes Investigation. - : Wiley. - 2040-1116 .- 2040-1124. ; 12:4, s. 501-509
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/Introduction: Given that mutations related to maturity-onset diabetes of the young (MODY) are rarely found in Chinese populations, we aim to characterize the mutation spectrum of MODY pedigrees. Materials and Methods: Maturity-onset diabetes of the young candidate gene- or exome-targeted capture sequencing was carried out in 76 probands from unrelated families fulfilling the clinical diagnostic criteria for MODY. MAF <0.01 in the GnomAD or ExAC database was used to filter significant variants. Sanger sequencing was then carried out to validate findings. Function prediction by SIFT, PolyPhen-2 and PROVEAN or CADD was carried out in missense mutations. Results: A total of 32 mutations in six genes were identified in 31 families, accounting for 40.79% of the potential MODY families. The MODY subtype detection rate was 18.42% for GCK, 15.79% for HNF1A, 2.63% for HNF4A, and 1.32% for KLF11, PAX4 and NEUROG3. Seven nonsense/frameshift mutations and four missense mutations with damaging prediction were newly identified novel mutations. The clinical features of MODY2, MODY3/1 and MODYX are similar to previous reports. Clinical phenotype of NEUROG3 p.Arg55Glufs*23 is characterized by hyperglycemia and mild intermittent abdominal pain. Conclusions: This study adds to the emerging pattern of MODY epidemiology that the proportion of MODY explained by known pathogenic genes is higher than that previously reported, and found NEUROG3 as a new causative gene for MODY.
  •  
5.
  • Lindgren, Cecilia, et al. (författare)
  • Contribution of known and unknown susceptibility genes to early-onset diabetes in scandinavia: evidence for heterogeneity.
  • 2002
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 51:5, s. 1609-1617
  • Tidskriftsartikel (refereegranskat)abstract
    • In an attempt to identify novel susceptibility genes predisposing to early-onset diabetes (EOD), we performed a genome-wide scan using 433 markers in 222 individuals (119 with diabetes) from 29 Scandinavian families with ≥2 members with onset of diabetes ≤45 years. The highest nonparametric linkage (NPL) score, 2.7 (P < 0.01), was observed on chromosome 1p (D1S473/D1S438). Six other regions on chromosomes 3p, 7q, 11q, 18q, 20q, and 21q showed a nominal P value <0.05. Of the EOD subjects in these 29 families, 20% were GAD antibody positive and 68% displayed type 1 diabetes HLA risk alleles (DQB*02 or 0302). Mutations in maturity-onset diabetes of the young (MODY) 1–5 genes and the A3243G mitochondrial DNA mutation were detected by single-strand conformation polymorphism and direct sequencing. To increase homogeneity, we analyzed a subsample of five families with autosomal dominant inheritance of EOD (greater than or equal to two members with age at diagnosis ≤35 years). The highest NPL scores were found on chromosome 1p (D1S438–D1S1665; NPL 3.0; P < 0.01) and 16q (D16S419; NPL 2.9; P < 0.01). After exclusion of three families with MODY1, MODY3, and mitochondrial mutations, the highest NPL scores were observed on chromosomes 1p (D1S438; NPL 2.6; P < 0.01), 3p (D3S1620; NPL 2.2; P < 0.03), 5q (D5S1465; NPL 2.1; P < 0.03), 7q (D7S820; NPL 2.0; P < 0.03), 18q (D18S535; NPL 1.9; P < 0.04), 20q (D20S195; NPL 2.5; P < 0.02), and 21q (D21S1446; NPL 2.2; P < 0.03). We conclude that considerable heterogeneity exists in Scandinavian subjects with EOD; 24% had MODY or maternally inherited diabetes and deafness, and ∼60% were GAD antibody positive or had type 1 diabetes-associated HLA genotypes. Our data also point at putative chromosomal regions, which could harbor novel genes that contribute to EOD.
  •  
6.
  • Ren, Wenqian, et al. (författare)
  • Adult-onset type 1 diabetic patients with less severe clinical manifestation have less risk DR-DQ genotypes than childhood-onset patients
  • 2021
  • Ingår i: Diabetes/Metabolism Research and Reviews. - : Wiley. - 1520-7552 .- 1520-7560. ; 37:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The aim of this study was to investigate differences in clinical features and HLA genotypes between adult-onset and childhood-onset patients with type 1 diabetes in a Chinese population. Materials and Methods: This study enrolled 716 Han Chinese patients with type 1 diabetes from Guangdong (258 childhood-onset and 458 adult-onset) to compare their clinical features. Of them 214 patients with classical type 1 diabetes (100 childhood-onset and 114 adult-onset) were selected for HLA DR and DQ genotyping by next-generation sequencing. Results: Adult-onset patients were characterized by longer duration of symptoms before diagnosis, lower frequency of DKA at disease onset, less frequent autoantibody positivity, higher serum C-peptide concentrations, and better glycemic control. These findings were replicated in the restricted cohort of 214 patients with classical type 1 diabetes. Compared with childhood-onset patients, adult-onset patients had a lower frequency of the DR9 haplotype, as well as lower frequency of high-risk DR3/DR4 and DR3/DR9 genotypes, but higher frequency of DR3/DR3 genotype and DR3/X, DR4/X or DR9/X (X, non-risk) genotypes. Conclusions: Adult-onset type 1 diabetic patients with susceptible haplotypes (DR3, DR4 or DR9) were more likely to carry protective DR-DQ haplotypes than childhood-onset patients, which suggested the association between less risk DR-DQ genotypes and the less severe clinical manifestation in adult-onset patients.
  •  
7.
  • Tuomi, Tiinamaija, et al. (författare)
  • The many faces of diabetes: a disease with increasing heterogeneity
  • 2014
  • Ingår i: The Lancet. - 1474-547X. ; 383:9922, s. 1084-1094
  • Forskningsöversikt (refereegranskat)abstract
    • Diabetes is a much more heterogeneous disease than the present subdivision into types 1 and 2 assumes; type 1 and type 2 diabetes probably represent extremes on a range of diabetic disorders. Both type 1 and type 2 diabetes seem to result from a collision between genes and environment. Although genetic predisposition establishes susceptibility, rapid changes in the environment (ie, lifestyle factors) are the most probable explanation for the increase in incidence of both forms of diabetes. Many patients have genetic predispositions to both forms of diabetes, resulting in hybrid forms of diabetes (eg, latent autoimmune diabetes in adults). Obesity is a strong modifi er of diabetes risk, and can account for not only a large proportion of the epidemic of type 2 diabetes in Asia but also the ever-increasing number of adolescents with type 2 diabetes. With improved characterisation of patients with diabetes, the range of diabetic subgroups will become even more diverse in the future.
  •  
8.
  • Weng, Jianping, et al. (författare)
  • An automated fluorescent single strand conformation polymorphism technique for high throughput mutation screening
  • 2001
  • Ingår i: Chinese Medical Journal. - 0366-6999. ; 114:11, s. 1147-1150
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To develop a high throughput mutational detection method by multiple fluorescence-labeled polymerase chain reaction (PCR) products. METHODS: A total of 27 known mutations including 22 substitutions, 3 insertions (1, 2 and 7 bp) and 2 deletions (1 and 2 bp) in the hepatocyte nuclear factor (HNF)-4 alpha, glucokinase and HNF-1 alpha genes were tested. During nested PCR, amplified fragments were labeled with three fluorescent dyes. PCR products were visualized with an ABI-377 fluorescence sequencer using 5% glycerol or 10% sucrose in non-denaturing gel conditions. RESULTS: Twenty-five of 27 variants (93%) could be detected by combining 5% glycerol and 10% sucrose gel matrix conditions. Twenty-two of 27 (82%) and 18 of 27 (67%) variants were identified using 5% glycerol and 10% sucrose conditions, respectively. CONCLUSION: This fluorescence-based PCR single strand conformation polymorphism technique represents a simple, non-hazardous, time-saving and sensitive method for high throughput mutation detection.
  •  
9.
  • Weng, Jianping, et al. (författare)
  • Screening for MODY mutations, GAD antibodies, and type 1 diabetes--associated HLA genotypes in women with gestational diabetes mellitus.
  • 2002
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 25:1, s. 68-71
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To investigate whether genetic susceptibility to type 1 diabetes or maturity-onset diabetes of the young (MODY) increases susceptibility to gestational diabetes mellitus (GDM). RESEARCH DESIGN AND METHODS: We studied mutations in MODY1-4 genes, the presence of GAD antibodies, and HLA DQB1 risk genotypes in 66 Swedish women with GDM and a family history of diabetes. An oral glucose tolerance test was repeated in 46 women at 1 year postpartum. RESULTS: There was no increase in type 1 diabetes-associated HLA-DQB1 alleles or GAD antibodies when compared with a group of type 2 diabetic patients (n = 82) or healthy control subjects (n = 86). Mutations in known MODY genes were identified in 3 of the 66 subjects (1 MODY2, 1 MODY3, and 1 MODY4). Of the 46 GDM subjects, 2 had diabetes (4%) and 17 had impaired glucose tolerance (IGT) (37%) at 1 year postpartum. Of the two subjects who developed manifest diabetes, one carried a MODY3 mutation (A203H in the hepatocyte nuclear factor-1alpha gene). There was no increase in high-risk HLA alleles or GAD antibodies in the women who had manifest diabetes or IGT at 1 year postpartum. CONCLUSIONS: MODY mutations but not autoimmunity contribute to GDM in Swedish women with a family history of diabetes and increase the risk of subsequent diabetes.
  •  
10.
  • Wu, Chuanyan, et al. (författare)
  • Elevated circulating follistatin associates with an increased risk of type 2 diabetes
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • The hepatokine follistatin is elevated in patients with type 2 diabetes (T2D) and promotes hyperglycemia in mice. Here we explore the relationship of plasma follistatin levels with incident T2D and mechanisms involved. Adjusted hazard ratio (HR) per standard deviation (SD) increase in follistatin levels for T2D is 1.24 (CI: 1.04-1.47, p < 0.05) during 19-year follow-up (n = 4060, Sweden); and 1.31 (CI: 1.09-1.58, p < 0.01) during 4-year follow-up (n = 883, Finland). High circulating follistatin associates with adipose tissue insulin resistance and non-alcoholic fatty liver disease (n = 210, Germany). In human adipocytes, follistatin dose-dependently increases free fatty acid release. In genome-wide association study (GWAS), variation in the glucokinase regulatory protein gene (GCKR) associates with plasma follistatin levels (n = 4239, Sweden; n = 885, UK, Italy and Sweden) and GCKR regulates follistatin secretion in hepatocytes in vitro. Our findings suggest that GCKR regulates follistatin secretion and that elevated circulating follistatin associates with an increased risk of T2D by inducing adipose tissue insulin resistance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy