SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Westergren Thorsson Gunilla) "

Sökning: WFRF:(Westergren Thorsson Gunilla)

  • Resultat 1-10 av 155
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Löfdahl, Anna, et al. (författare)
  • 5-HT2B receptor antagonists attenuate myofibroblast differentiation and subsequent fibrotic responses in vitro and in vivo
  • 2016
  • Ingår i: Physiological Reports. - : Wiley. - 2051-817X. ; 4:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulmonary fibrosis is characterized by excessive accumulation of connective tissue, along with activated extracellular matrix (ECM)-producing cells, myofibroblasts. The pathological mechanisms are not well known, however serotonin (5-HT) and 5-HT class 2 (5-HT2) receptors have been associated with fibrosis. The aim of the present study was to investigate the role of 5-HT2B receptors in fibrosis, using small molecular 5-HT2B receptor antagonists EXT5 and EXT9, with slightly different receptor affinity. Myofibroblast differentiation [production of alpha-smooth muscle actin (α-SMA)] and ECM synthesis were quantified in vitro, and the effects of the receptor antagonists were evaluated. Pulmonary fibrosis was also modeled in mice by subcutaneous bleomycin administrations (under light isoflurane anesthesia), and the effects of receptor antagonists on tissue density, collagen-producing cells, myofibroblasts and decorin expression were investigated. In addition, cytokine expression was analyzed in serum. Lung fibroblasts displayed an increased α-SMA (P < 0.05) and total proteoglycan production (P < 0.01) when cultured with TGF-β1 together with 5-HT, which were significantly reduced with both receptor antagonists. Following treatment with EXT5 or EXT9, tissue density, expression of decorin, number of collagen-producing cells, and myofibroblasts were significantly decreased in vivo compared to bleomycin-treated mice. Receptor antagonization also significantly reduced systemic levels of TNF-α and IL-1β, indicating a role in systemic inflammation. In conclusion, 5-HT2B receptor antagonists have potential to prevent myofibroblast differentiation, in vitro and in vivo, with subsequent effect on matrix deposition. The attenuating effects of 5-HT2B receptor antagonists on fibrotic tissue remodeling suggest these receptors as novel targets for the treatment of pulmonary fibrosis.
  •  
2.
  • Rolandsson Enes, Sara, et al. (författare)
  • Primary mesenchymal stem cells in human transplanted lungs are CD90/CD105 perivascularly located tissue-resident cells
  • 2014
  • Ingår i: BMJ Open Respiratory Research. - : BMJ Publishing Group. - 2052-4439. ; 1:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Mesenchymal stem cells (MSC) have not only been implicated in the development of lung diseases, but they have also been proposed as a future cell-based therapy for lung diseases. However, the cellular identity of the primary MSC in human lung tissues has not yet been reported. This study therefore aimed to identify and characterise the ‘bona fide’ MSC in human lungs and to investigate if the MSC numbers correlate with the development of bronchiolitis obliterans syndrome in lung-transplanted patients. METHODS: Primary lung MSC were directly isolated or culture-derived from central and peripheral transbronchial biopsies of lung-transplanted patients and evaluated using a comprehensive panel of in vitro and in vivo assays. RESULTS: Primary MSC were enriched in the CD90/CD105 mononuclear cell fraction with mesenchymal progenitor frequencies of up to four colony-forming units, fibroblast/100 cells. In situ staining of lung tissues revealed that CD90/CD105 MSCs were located perivascularly. MSC were tissue-resident and exclusively donor lung-derived even in biopsies obtained from patients as long as 16 years after transplantation. Culture-derived mesenchymal stromal cells showed typical in vitro MSC properties; however, xenotransplantation into non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice showed that lung MSC readily differentiated into adipocytes and stromal tissues, but lacked significant in vivo bone formation. CONCLUSIONS: These data clearly demonstrate that primary MSC in human lung tissues are not only tissue resident but also tissue-specific. The identification and phenotypic characterisation of primary lung MSC is an important first step in identifying the role of MSC in normal lung physiology and pulmonary diseases.
  •  
3.
  • Rosmark, Oskar, et al. (författare)
  • A tunable physiomimetic stretch system evaluated with precision cut lung slices and recellularized human lung scaffolds
  • 2022
  • Ingår i: Frontiers in Bioengineering and Biotechnology. - : Frontiers Media SA. - 2296-4185. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Breathing exposes lung cells to continual mechanical stimuli, which is part of the microenvironmental signals directing cellular functions together with the extracellular matrix (ECM). Therefore, developing systems that incorporate both stimuli is urgent to fully understand cell behavior. This study aims to introduce a novel in vitro culture methodology combining a cyclic stretch that simulates in vivo breathing with 3D cell culture platforms in the form of decellularized lung slices (DLS) and precision cut lung slices (PCLS). To this end, we have constructed a device that mimics the amplitudes and frequencies of distensions seen in the breathing human lung. For its validation, we cultured H441 lung epithelial cells in human DLS exposed to 16 stretch cycles per minute with a 10% stretch amplitude. Cell viability (resazurin reduction), proliferation (Ki-67) and YAP1 activation were evaluated at 24 and 96 h by immunohistochemistry, while the expression of SFTPB, COL3A1, COL4A3 and LAMA5 was evaluated by qPCR. Cyclic stretch induced an increase in SFTPB expression after 24 h without a concomitant increase in the stretch responsive gene YAP1. Moreover, the ECM milieu lowered the expression of the basement membrane protein genes COL4A3 and LAMA5 compared to tissue culture plastic control cultures, but no effect was observed by the mechanical stimuli. The device also confirmed good compatibility with PCLS culture, showing preserved morphology and metabolism in rat PCLS after 72 h of mechanical stretch. Thus, we present a novel device and methodology for the easy assembling and study of lung tissue slice cultures subjected to physiomimetic mechanical stimuli, which shows promise for future studies of cell and tissue function in a lung ECM milieu with physiological or pathological mechanical stimuli.
  •  
4.
  • Tykesson, Emil, et al. (författare)
  • Recombinant dermatan sulfate is a potent activator of heparin cofactor II-dependent inhibition of thrombin
  • 2019
  • Ingår i: Glycobiology. - : Oxford University Press (OUP). - 1460-2423. ; 29:6, s. 446-451
  • Tidskriftsartikel (refereegranskat)abstract
    • The glycosaminoglycan dermatan sulfate (DS) is a well-known activator of heparin cofactor II-dependent inactivation of thrombin. In contrast to heparin, dermatan sulfate has never been prepared recombinantly from material of non-animal origin. Here we report on the enzymatic synthesis of structurally well-defined DS with high anticoagulant activity. Using a microbial K4 polysaccharide and the recombinant enzymes DS-epimerase 1, dermatan 4-O-sulfotransferase 1, uronyl 2-O-sulfotransferase and N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase, several new glycostructures have been prepared, such as a homogenously sulfated IdoA-GalNAc-4S polymer and its 2-O-, 6-O- and 2,6-O-sulfated derivatives. Importantly, the recombinant highly 2,4-O-sulfated DS inhibits thrombin via heparin cofactor II, approximately 20 times better than heparin, enabling manipulation of vascular and extravascular coagulation. The potential of this method can be extended to preparation of specific structures that are of importance for binding and activation of cytokines, and control of inflammation and metastasis, involving extravasation and migration.
  •  
5.
  • 3D Lung Models for Regenerating Lung Tissue
  • 2022
  • Samlingsverk (redaktörskap) (refereegranskat)abstract
    • 3D Lung Models for Regenerating Lung Tissue is a comprehensive summary on the current state of art 3D lung models and novel techniques that can be used to regenerate lung tissue. Written by experts in the field, readers can expect to learn more about 3D lung models, novel techniques including bioprinting and advanced imaging techniques, as well as important knowledge about the complexity of the lung and its extracellular matrix composition.Structured into 15 different chapters, the book spans from the original 2D cell culture model on plastic, to advanced 3D lung models such as using human extracellular matrix protein. In addition, the last chapters cover new techniques including 3D printing, bioprinting, and artificial intelligence that can be used to drive the field forward and some future perspectives. This highly topical book with chapters on everything from the complexity of the lung and its microenvironment to cutting-edge 3D lung models, represents an exciting body of work that can be used by researchers during study design, grant writing, as teaching material, or to stay updated with the progression of the field.Key Features A comprehensive summary of advanced 3D lung models written by the experts in the respiratory field Explore novel techniques that can be used to evaluate and improve 3D lung models, including techniques such as 3D printing, bioprinting, and artificial intelligence Explains what extracellular matrix is, the complexity of the lung microenvironment, and why this knowledge is important for creating a functional bioartificial lung
  •  
6.
  • Abdillahi, Suado M, et al. (författare)
  • The Pulmonary Extracellular Matrix Is a Bactericidal Barrier Against Haemophilus influenzae in Chronic Obstructive Pulmonary Disease (COPD) : Implications for an in vivo Innate Host Defense Function of Collagen VI
  • 2018
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-typeable Haemophilus influenzae (NTHi) is a Gram-negative human commensal commonly residing in the nasopharynx of preschool children. It occasionally causes upper respiratory tract infection such as acute otitis media, but can also spread to the lower respiratory tract causing bronchitis and pneumonia. There is increasing recognition that NTHi has an important role in chronic lower respiratory tract inflammation, particularly in persistent infection in patients suffering from chronic obstructive pulmonary disease (COPD). Here, we set out to assess the innate protective effects of collagen VI, a ubiquitous extracellular matrix component, against NTHi infection in vivo. In vitro, collagen VI rapidly kills bacteria through pore formation and membrane rupture, followed by exudation of intracellular content. This effect is mediated by specific binding of the von Willebrand A (VWA) domains of collagen VI to the NTHi surface adhesins protein E (PE) and Haemophilus autotransporter protein (Hap). Similar observations were made in vivo specimens from murine airways and COPD patient biopsies. NTHi bacteria adhered to collagen fibrils in the airway mucosa and were rapidly killed by membrane destabilization. The significance in host-pathogen interplay of one of these molecules, PE, was highlighted by the observation that it confers partial protection from bacterial killing. Bacteria lacking PE were more prone to antimicrobial activity than NTHi expressing PE. Altogether the data shed new light on the carefully orchestrated molecular events of the host-pathogen interplay in COPD and emphasize the importance of the extracellular matrix as a novel branch of innate host defense.
  •  
7.
  • Akbarshahi, Hamid, et al. (författare)
  • Acute lung injury in acute pancreatitis - Awaiting the big leap.
  • 2012
  • Ingår i: Respiratory Medicine. - : Elsevier BV. - 1532-3064 .- 0954-6111. ; 106:9, s. 1199-1210
  • Forskningsöversikt (refereegranskat)abstract
    • Acute lung injury is a severe complication to acute pancreatitis and a significant health problem associated with a considerable mortality. Underlying mechanisms are complex and poorly understood, although recent insights have identified several inflammatory profiles and cellular components involved to varying degrees during different phases of pancreatitis exacerbation and acute lung injury. This review aims to highlight the current understanding of the inflammatory and cellular components involved in and responsible for the associations of acute pancreatitis and acute lung injury, with the hope of thereby providing an increased understanding of the underlying mechanisms. In addition, novel experimental models of modulating the pancreatitis-associated acute lung injury are presented, interventions that may be of potential future clinical value.
  •  
8.
  • Alaridah, Nader, et al. (författare)
  • Mycobacteria Manipulate G-Protein-Coupled Receptors to Increase Mucosal Rac1 Expression in the Lungs
  • 2017
  • Ingår i: Journal of Innate Immunity. - : S. Karger AG. - 1662-811X .- 1662-8128. ; 9, s. 318-329
  • Tidskriftsartikel (refereegranskat)abstract
    • Mycobacterium bovis bacille Calmette-Guérin (BCG) is currently the only approved vaccine against tuberculosis (TB). BCG mimics M. tuberculosis (Mtb) in its persistence in the body and is used as a benchmark to compare new vaccine candidates. BCG was originally designed for mucosal vaccination, but comprehensive knowledge about its interaction with epithelium is currently lacking. We used primary airway epithelial cells (AECs) and a murine model to investigate the initial events of mucosal BCG interactions. Furthermore, we analysed the impact of the G-protein-coupled receptors (GPCRs), CXCR1 and CXCR2, in this process, as these receptors were previously shown to be important during TB infection. BCG infection of AECs induced GPCR-dependent Rac1 up-regulation, resulting in actin redistribution. The altered distribution of the actin cytoskeleton involved the MAPK signalling pathway. Blocking of the CXCR1 or CXCR2 prior to infection decreased Rac1 expression, and increased epithelial transcriptional activity and epithelial cytokine production. BCG infection did not result in epithelial cell death as measured by p53 phosphorylation and annexin. This study demonstrated that BCG infection of AECs manipulated the GPCRs to suppress epithelial signalling pathways. Future vaccine strategies could thus be improved by targeting GPCRs.
  •  
9.
  • Andersson, Cecilia K, et al. (författare)
  • Activated MCTC mast cells infiltrate diseased lung areas in cystic fibrosis and idiopathic pulmonary fibrosis
  • 2011
  • Ingår i: Respiratory Research. - : Springer Science and Business Media LLC. - 1465-9921 .- 1465-993X. ; 12:139
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Although mast cells are regarded as important regulators of inflammation and tissue remodelling, their role in cystic fibrosis (CF) and idiopathic pulmonary fibrosis (IPF) has remained less studied. This study investigates the densities and phenotypes of mast cell populations in multiple lung compartments from patients with CF, IPF and never smoking controls. Methods: Small airways, pulmonary vessels, and lung parenchyma were subjected to detailed immunohistochemical analyses using lungs from patients with CF (20 lung regions; 5 patients), IPF (21 regions; 7 patients) and controls (16 regions; 8 subjects). In each compartment the densities and distribution of MCT and MCTC mast cell populations were studied as well as the mast cell expression of IL-6 and TGF-beta. Results: In the alveolar parenchyma in lungs from patients with CF, MCTC numbers increased in areas showing cellular inflammation or fibrosis compared to controls. Apart from an altered balance between MCTC and MCT cells, mast cell in CF lungs showed elevated expression of IL-6. In CF, a decrease in total mast cell numbers was observed in small airways and pulmonary vessels. In patients with IPF, a significantly elevated MCTC density was present in fibrotic areas of the alveolar parenchyma with increased mast cell expression of TGF-beta. The total mast cell density was unchanged in small airways and decreased in pulmonary vessels in IPF. Both the density, as well as the percentage, of MCTC correlated positively with the degree of fibrosis. The increased density of MCTC, as well as MCTC expression of TGF-beta, correlated negatively with patient lung function. Conclusions: The present study reveals that altered mast cell populations, with increased numbers of MCTC in diseased alveolar parenchyma, represents a significant component of the histopathology in CF and IPF. The mast cell alterations correlated to the degree of tissue remodelling and to lung function parameters. Further investigations of mast cells in these diseases may open for new therapeutic strategies.
  •  
10.
  • Andersson, Märta, et al. (författare)
  • Mycobacterium bovis bacilli Calmette-Guerin regulates leukocyte recruitment by modulating alveolar inflammatory responses.
  • 2012
  • Ingår i: Innate Immunity. - : SAGE Publications. - 1753-4267 .- 1753-4259. ; 18, s. 531-540
  • Tidskriftsartikel (refereegranskat)abstract
    • Leukocyte migration into the epithelial compartment is an important feature in the active phase of mycobacterial infections. In this study, we used the Transwell model to investigate the mechanisms behind mycobacteria-induced leukocyte recruitment and investigated the role of TLR2 and TLR4 in this process. Infection of epithelial cells resulted in significantly increased secretion of the neutrophil chemotactic CXCL8 and IL-6, but no secretion of monocyte chemotactic CCL2 or TNF-α was observed. In contrast to epithelial response, mycobacteria-infected neutrophils and monocytes secreted all these cytokines. Corresponding with epithelial cytokine response, mycobacterial infection of the epithelial cells increased neutrophil diapedesis, but decreased monocyte recruitment. However, monocyte recruitment towards mycobacteria infected epithelial cells significantly increased following addition of neutrophil pre-conditioned medium. Mycobacterial infection also increases alveolar epithelial expression of TLR2, but not TLR4, as analyzed by flow cytometry, Western blotting and visualized by confocal microscopy. Blocking of TLR2 inhibited neutrophil recruitment and cytokine secretion, while blocking of TLR4 had a lesser effect. To summarize, we found that primary alveolar epithelial cells produced a selective TLR2-dependent cytokine secretion upon mycobacterial infection. Furthermore, we found that cooperation between cells of the innate immunity is required in mounting proper antimicrobial defence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 155
Typ av publikation
tidskriftsartikel (136)
forskningsöversikt (11)
bokkapitel (4)
doktorsavhandling (2)
samlingsverk (redaktörskap) (1)
konferensbidrag (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (151)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Westergren-Thorsson, ... (152)
Bjermer, Leif (45)
Hallgren, Oskar (36)
Tufvesson, Ellen (24)
Andersson Sjöland, A ... (22)
Malmström, Anders (21)
visa fler...
Larsson-Callerfelt, ... (21)
Malmström, Johan (21)
Rolandsson Enes, Sar ... (19)
Marko-Varga, György (16)
Tykesson, Emil (15)
Nihlberg, Kristian (14)
Rosmark, Oskar (13)
Löfdahl, Anna (13)
Eriksson, Leif (12)
Ellervik, Ulf (11)
Müller, Catharina (10)
Wildt, Marie (10)
Erjefält, Jonas (9)
Löfdahl, Claes-Göran (9)
Rydell-Törmänen, Kri ... (8)
Dellgren, Göran (8)
Åhrman, Emma (8)
Hansson, Lennart (7)
Wigén, Jenny (7)
Elowsson Rendin, Lin ... (7)
Mörgelin, Matthias (6)
Riesbeck, Kristian (6)
Andréasson, Kristofe ... (6)
Hesselstrand, Roger (6)
Malmström, Lars (6)
Kadefors, Måns (6)
Mani, Katrin (5)
Maccarana, Marco (5)
Scheding, Stefan (5)
Elowsson, Linda (5)
Godaly, Gabriela (5)
Lutay, Nataliya (5)
Manner, Sophie (5)
Thiman, Lena (5)
Weitoft, Maria (5)
Scheja, Agneta (5)
Todorova, Lizbet (5)
Rendin, Linda Elowss ... (5)
Nybom, Annika (5)
Persson, Andrea (5)
Singh, Birendra (4)
Miller-Larsson, Anna (4)
Brunnström, Hans (4)
Zhou, Xiao Hong (4)
visa färre...
Lärosäte
Lunds universitet (151)
Karolinska Institutet (10)
Uppsala universitet (4)
Göteborgs universitet (3)
Kungliga Tekniska Högskolan (3)
Umeå universitet (2)
visa fler...
Stockholms universitet (2)
Högskolan Kristianstad (1)
visa färre...
Språk
Engelska (155)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (141)
Naturvetenskap (18)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy