SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Williams L Keoki) "

Sökning: WFRF:(Williams L Keoki)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Weinstock, Joshua S, et al. (författare)
  • Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis.
  • 2023
  • Ingår i: Nature. - 1476-4687. ; 616:7958, s. 755-763
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.
  •  
2.
  • Li, Josephine H., et al. (författare)
  • Identification of Genetic Variation Influencing Metformin Response in a Multiancestry Genome-Wide Association Study in the Diabetes Prevention Program (DPP)
  • 2023
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 72:8, s. 1161-1172
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide significant loci for metformin response in type 2 diabetes reported elsewhere have not been repli-cated in the Diabetes Prevention Program (DPP). To as-sess pharmacogenetic interactions in prediabetes, we conducted a genome-wide association study (GWAS) in the DPP. Cox proportional hazards models tested associations with diabetes incidence in the metformin (MET; n = 876) and placebo (PBO; n = 887) arms. Multiple linear regression assessed association with 1-year change in metformin-related quantitative traits, adjusted for baseline trait, age, sex, and 10 ancestry principal compo-nents. We tested for gene-by-treatment interaction. No significant associations emerged for diabetes inci-dence. We identified four genome-wide significant variants after correcting for correlated traits (P < 9 × 1029). In the MET arm, rs144322333 near ENOSF1 (minor al-lele frequency [MAF]AFR = 0.07; MAFEUR = 0.002) was associated with an increase in percentage of glycated hemoglobin (per minor allele, b = 0.39 [95% CI 0.28, 0.50]; P = 2.8 × 10212). rs145591055 near OMSR (MAF = 0.10 in American Indians) was associated with weight loss (kilograms) (per G allele, b = 27.55 [95% CI 29.88, 25.22]; P = 3.2 × 10210) in the MET arm. Neither variant was significant in PBO; gene-by-treatment interaction was significant for both variants [P(G×T) < 1.0 × 1024 ]. Replication in individuals with diabetes did not yield significant findings. A GWAS for metformin response in prediabetes revealed novel ethnic-specific associations that require further investigation but may have implications for tailored therapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy