SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Winblad B.G.) "

Sökning: WFRF:(Winblad B.G.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ankarcrona, M., et al. (författare)
  • Current and future treatment of amyloid diseases
  • 2016
  • Ingår i: Journal of Internal Medicine. - : Wiley. - 0954-6820 .- 1365-2796. ; 280:2, s. 177-202
  • Forskningsöversikt (refereegranskat)abstract
    • There are more than 30 human proteins whose aggregation appears to cause degenerative maladies referred to as amyloid diseases or amyloidoses. These disorders are named after the characteristic cross--sheet amyloid fibrils that accumulate systemically or are localized to specific organs. In most cases, current treatment is limited to symptomatic approaches and thus disease-modifying therapies are needed. Alzheimer's disease is a neurodegenerative disorder with extracellular amyloid -peptide (A) fibrils and intracellular tau neurofibrillary tangles as pathological hallmarks. Numerous clinical trials have been conducted with passive and active immunotherapy, and small molecules to inhibit A formation and aggregation or to enhance A clearance; so far such clinical trials have been unsuccessful. Novel strategies are therefore required and here we will discuss the possibility of utilizing the chaperone BRICHOS to prevent A aggregation and toxicity. Type 2 diabetes mellitus is symptomatically treated with insulin. However, the underlying pathology is linked to the aggregation and progressive accumulation of islet amyloid polypeptide as fibrils and oligomers, which are cytotoxic. Several compounds have been shown to inhibit islet amyloid aggregation and cytotoxicity in vitro. Future animal studies and clinical trials have to be conducted to determine their efficacy in vivo. The transthyretin (TTR) amyloidoses are a group of systemic degenerative diseases compromising multiple organ systems, caused by TTR aggregation. Liver transplantation decreases the generation of misfolded TTR and improves the quality of life for a subgroup of this patient population. Compounds that stabilize the natively folded, nonamyloidogenic, tetrameric conformation of TTR have been developed and the drug tafamidis is available as a promising treatment. Read more articles from the symposium: Amyloid - a multifaceted player in human health and disease.
  •  
2.
  • Carlred, Louise M, 1985, et al. (författare)
  • Simultaneous imaging of amyloid-β and lipids in brain tissue using antibody-coupled liposomes and time-of-flight secondary ion mass spectrometry
  • 2014
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 136:28, s. 9973-9981
  • Tidskriftsartikel (refereegranskat)abstract
    • The spatial localization of amyloid-β peptide deposits, the major component of senile plaques in Alzheimer's disease (AD), was mapped in transgenic AD mouse brains using time-of-flight secondary ion mass spectrometry (ToF-SIMS), simultaneously with several endogenous molecules that cannot be mapped using conventional immunohistochemistry imaging, including phospholipids, cholesterol and sulfatides. Whereas the endogenous lipids were detected directly, the amyloid-β deposits, which cannot be detected as intact entities with ToF-SIMS because of extensive ion-induced fragmentation, were identified by specific binding of deuterated liposomes to antibodies directed against amyloid-β. Comparative investigation of the amyloid-β deposits using conventional immunohistochemistry and fluorescence microscopy suggests similar sensitivity but a more surface-confined identification due to the shallow penetration depth of the ToF-SIMS signal. The recorded ToF-SIMS images thus display the localization of lipids and amyloid-β in a narrow (∼10 nm) two-dimensional plane at the tissue surface. As compared to a frozen nontreated tissue sample, the liposome preparation protocol generally increased the signal intensity of endogenous lipids, likely caused by matrix effects associated with the removal of salts, but no severe effects on the tissue integrity and the spatial distribution of lipids were observed with ToF-SIMS or scanning electron microscopy (SEM). This method may provide an important extension to conventional tissue imaging techniques to investigate the complex interplay of different kinds of molecules in neurodegenerative diseases, in the same specimen. However, limitations in target accessibility of the liposomes as well as unspecific binding need further consideration. © 2014 American Chemical Society.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy