SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xoplaki E.) "

Sökning: WFRF:(Xoplaki E.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Luterbacher, J., et al. (författare)
  • European summer temperatures since Roman times
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The spatial context is criticalwhen assessing present-day climate anomalies, attributing them to potential forcings and making statements regarding their frequency and severity in a long-term perspective. Recent international initiatives have expanded the number of high-quality proxy-records and developed new statistical reconstruction methods. These advances allow more rigorous regional past temperature reconstructions and, in turn, the possibility of evaluating climate models on policy-relevant, spatiotemporal scales. Here we provide a new proxy-based, annually-resolved, spatial reconstruction of the European summer (June-August) temperature fields back to 755 CE based on Bayesian hierarchical modelling (BHM), together with estimates of the European mean temperature variation since 138 BCE based on BHM and composite-plus-scaling (CPS). Our reconstructions compare well with independent instrumental and proxy-based temperature estimates, but suggest a larger amplitude in summer temperature variability than previously reported. Both CPS and BHM reconstructions indicate that the mean 20th century European summer temperature was not significantly different from some earlier centuries, including the 1st, 2nd, 8th and 10th centuries CE. The 1st century (in BHM also the 10th century) may even have been slightly warmer than the 20th century, but the difference is not statistically significant. Comparing each 50 yr period with the 1951-2000 period reveals a similar pattern. Recent summers, however, have been unusually warm in the context of the last two millennia and there are no 30 yr periods in either reconstruction that exceed the mean average European summer temperature of the last 3 decades (1986-2015 CE). A comparison with an ensemble of climate model simulations suggests that the reconstructed European summer temperature variability over the period 850-2000 CE reflects changes in both internal variability and external forcing on multi-decadal time-scales. For pan-European temperatures we find slightly better agreement between the reconstruction and the model simulations with high-end estimates for total solar irradiance. Temperature differences between the medieval period, the recent period and the Little Ice Age are larger in the reconstructions than the simulations. This may indicate inflated variability of the reconstructions, a lack of sensitivity and processes to changes in external forcing on the simulated European climate and/or an underestimation of internal variability on centennial and longer time scales.
  •  
2.
  • Smerdon, J. E., et al. (författare)
  • Comparing proxy and model estimates of hydroclimate variability and change over the Common Era
  • 2017
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 13:12, s. 1851-1900
  • Tidskriftsartikel (refereegranskat)abstract
    • Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited because of a paucity of modern instrumental observations that are distributed unevenly across the globe and only span parts of the 20th and 21st centuries. Such data coverage is insufficient for characterizing hydroclimate and its associated dynamics because of its multidecadal to centennial variability and highly regionalized spatial signature. High-resolution (seasonal to decadal) hydroclimatic proxies that span all or parts of the Common Era (CE) and paleoclimate simulations from climate models are therefore important tools for augmenting our understanding of hydroclimate variability. In particular, the comparison of the two sources of information is critical for addressing the uncertainties and limitations of both while enriching each of their interpretations. We review the principal proxy data available for hydroclimatic reconstructions over the CE and highlight the contemporary understanding of how these proxies are interpreted as hydroclimate indicators. We also review the available last-millennium simulations from fully coupled climate models and discuss several outstanding challenges associated with simulating hydroclimate variability and change over the CE. A specific review of simulated hydroclimatic changes forced by volcanic events is provided, as is a discussion of expected improvements in estimated radiative forcings, models, and their implementation in the future. Our review of hydroclimatic proxies and last-millennium model simulations is used as the basis for articulating a variety of considerations and best practices for how to perform proxy-model comparisons of CE hydroclimate. This discussion provides a framework for how best to evaluate hydroclimate variability and its associated dynamics using these comparisons and how they can better inform interpretations of both proxy data and model simulations. We subsequently explore means of using proxy-model comparisons to better constrain and characterize future hydroclimate risks. This is explored specifically in the context of several examples that demonstrate how proxy-model comparisons can be used to quantitatively constrain future hydroclimatic risks as estimated from climate model projections.
  •  
3.
  • Charpentier Ljungqvist, Fredrik, et al. (författare)
  • European warm-season temperature and hydroclimate since 850 CE
  • 2019
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 14:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The long-term relationship between temperature and hydroclimate has remained uncertain due to the short length of instrumental measurements and inconsistent results from climate model simulations. This lack of understanding is particularly critical with regard to projected drought and flood risks. Here we assess warm-season co-variability patterns between temperature and hydroclimate over Europe back to 850 CE using instrumental measurements, tree-ring based reconstructions, and climate model simulations. We find that the temperature-hydroclimate relationship in both the instrumental and reconstructed data turns more positive at lower frequencies, but less so in model simulations, with a dipole emerging between positive (warm and wet) and negative (warm and dry) associations in northern and southern Europe, respectively. Compared to instrumental data, models reveal a more negative co-variability across all timescales, while reconstructions exhibit a more positive co-variability. Despite the observed differences in the temperature-hydroclimate co-variability patterns in instrumental, reconstructed and model simulated data, we find that all data types share relatively similar phase-relationships between temperature and hydroclimate, indicating the common influence of external forcing. The co-variability between temperature and soil moisture in the model simulations is overestimated, implying a possible overestimation of temperature-driven future drought risks.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy