SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ye Quanzhi) "

Sökning: WFRF:(Ye Quanzhi)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Farnocchia, Davide, et al. (författare)
  • International Asteroid Warning Network Timing Campaign: 2019 XS
  • 2022
  • Ingår i: The Planetary Science Journal. - : Institute of Physics Publishing (IOPP). - 2632-3338. ; 3:7
  • Tidskriftsartikel (refereegranskat)abstract
    • As part of the International Asteroid Warning Network's observational exercises, we conducted a campaign to observe near-Earth asteroid 2019 XS around its close approach to Earth on 2021 November 9. The goal of the campaign was to characterize errors in the observation times reported to the Minor Planet Center, which become an increasingly important consideration as astrometric accuracy improves and more fast-moving asteroids are observed. As part of the exercise, a total of 957 astrometric observations of 2019 XS during the encounter were reported and subsequently were analyzed to obtain the corresponding residuals. While the timing errors are typically smaller than 1 s, the reported times appear to be negatively biased, i.e., they are generally earlier than they should be. We also compared the observer-provided position uncertainty with the cross-track residuals, which are independent of timing errors. A large fraction of the estimated uncertainties appear to be optimistic, especially when <0 2. We compiled individual reports for each observer to help identify and remove the root cause of any possible timing error and improve the uncertainty quantification process. We suggest possible sources of timing errors and describe a simple procedure to derive reliable, conservative position uncertainties.
  •  
2.
  • Fedorets, Grigori, et al. (författare)
  • Establishing Earth's Minimoon Population through Characterization of Asteroid 2020 CD3
  • 2020
  • Ingår i: Astronomical Journal. - : Institute of Physics (IOP). - 0004-6256 .- 1538-3881. ; 160:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on our detailed characterization of Earth's second known temporary natural satellite, or minimoon, asteroid 2020 CD3. An artificial origin can be ruled out based on its area-to-mass ratio and broadband photometry, which suggest that it is a silicate asteroid belonging to the S or V complex in asteroid taxonomy. The discovery of 2020 CD3 allows for the first time a comparison between known minimoons and theoretical models of their expected physical and dynamical properties. The estimated diameter of (+0.4, -0.2) m and geocentric capture approximately a decade after the first known minimoon, 2006 RH120, are in agreement with theoretical predictions. The capture duration of 2020 CD3 of at least 2.7 yr is unexpectedly long compared to the simulation average, but it is in agreement with simulated minimoons that have close lunar encounters, providing additional support for the orbital models. 2020 CD3's atypical rotation period, significantly longer than theoretical predictions, suggests that our understanding of meter-scale asteroids needs revision. More discoveries and a detailed characterization of the population can be expected with the forthcoming Vera C. Rubin Observatory Legacy Survey of Space and Time.
  •  
3.
  • Jenniskens, Peter, et al. (författare)
  • The impact and recovery of asteroid 2018 LA
  • 2021
  • Ingår i: Meteoritics and Planetary Science. - : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 56:4, s. 844-893
  • Tidskriftsartikel (refereegranskat)abstract
    • The June 2, 2018 impact of asteroid 2018 LA over Botswana is only the second asteroid detected in space prior to impacting over land. Here, we report on the successful recovery of meteorites. Additional astrometric data refine the approach orbit and define the spin period and shape of the asteroid. Video observations of the fireball constrain the asteroid's position in its orbit and were used to triangulate the location of the fireball's main flare over the Central Kalahari Game Reserve. Twenty‐three meteorites were recovered. A consortium study of eight of these classifies Motopi Pan as an HED polymict breccia derived from howardite, cumulate and basaltic eucrite, and diogenite lithologies. Before impact, 2018 LA was a solid rock of ~156 cm diameter with high bulk density ~2.85 g cm−3, a relatively low albedo pV ~ 0.25, no significant opposition effect on the asteroid brightness, and an impact kinetic energy of ~0.2 kt. The orbit of 2018 LA is consistent with an origin at Vesta (or its Vestoids) and delivery into an Earth‐impacting orbit via the ν6 resonance. The impact that ejected 2018 LA in an orbit toward Earth occurred 22.8 ± 3.8 Ma ago. Zircons record a concordant U‐Pb age of 4563 ± 11 Ma and a consistent 207Pb/206Pb age of 4563 ± 6 Ma. A much younger Pb‐Pb phosphate resetting age of 4234 ± 41 Ma was found. From this impact chronology, we discuss what is the possible source crater of Motopi Pan and the age of Vesta's Veneneia impact basin.
  •  
4.
  • Schwamb, Megan E., et al. (författare)
  • Tuning the Legacy Survey of Space and Time (LSST) Observing Strategy for Solar System Science
  • 2023
  • Ingår i: Astrophysical Journal Supplement Series. - : Iop Publishing Ltd. - 0067-0049 .- 1538-4365. ; 266:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Vera C. Rubin Observatory is expected to start the Legacy Survey of Space and Time (LSST) in early to mid-2025. This multiband wide-field synoptic survey will transform our view of the solar system, with the discovery and monitoring of over five million small bodies. The final survey strategy chosen for LSST has direct implications on the discoverability and characterization of solar system minor planets and passing interstellar objects. Creating an inventory of the solar system is one of the four main LSST science drivers. The LSST observing cadence is a complex optimization problem that must balance the priorities and needs of all the key LSST science areas. To design the best LSST survey strategy, a series of operation simulations using the Rubin Observatory scheduler have been generated to explore the various options for tuning observing parameters and prioritizations. We explore the impact of the various simulated LSST observing strategies on studying the solar system's small body reservoirs. We examine what are the best observing scenarios and review what are the important considerations for maximizing LSST solar system science. In general, most of the LSST cadence simulations produce +/- 5% or less variations in our chosen key metrics, but a subset of the simulations significantly hinder science returns with much larger losses in the discovery and light-curve metrics.
  •  
5.
  • Ye, Quanzhi, et al. (författare)
  • Debris of Asteroid Disruptions Close to the Sun
  • 2019
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 873:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The under-abundance of asteroids on orbits with small perihelion distances suggests that thermally driven disruption may be an important process in the removal of rocky bodies in the solar system. Here we report our study of how the debris streams arise from possible thermally driven disruptions in the near-Sun region. We calculate that a small body with a diameter 0.5 km can produce a sufficient amount of material to allow the detection of the debris at the Earth as meteor showers, and that bodies at such sizes thermally disrupt every ~2 kyr. We also find that objects from the inner parts of the asteroid belt are more likely to become Sun-approachers than those from the outer parts. We simulate the formation and evolution of the debris streams produced from a set of synthetic disrupting asteroids drawn from Granvik et al.'s near-Earth object population model, and find that they evolve 10–70 times faster than streams produced at ordinary solar distances. We compare the simulation results to a catalog of known meteor showers on Sun-approaching orbits. We show that there is a clear overabundance of Sun-approaching meteor showers, which is best explained by a combining effect of comet contamination and an extended disintegration phase that lasts up to a few thousand years. We suggest that a few asteroid-like Sun-approaching objects that brighten significantly at their perihelion passages could, in fact, be disrupting asteroids. An extended period of thermal disruption may also explain the widespread detection of transiting debris in exoplanetary systems.
  •  
6.
  • Ye, Quanzhi, et al. (författare)
  • Toward Efficient Detection of Small Near-Earth Asteroids Using the Zwicky Transient Facility (ZTF)
  • 2019
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:1001
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe ZStreak, a semi-real-time pipeline specialized in detecting small, fast-moving, near-Earth asteroids (NEAs), which is currently operating on the data from the newly commissioned Zwicky Transient Facility (ZTF) survey. Based on a prototype originally developed by Waszczak et al. (2017) for the Palomar Transient Factory (PTF), the predecessor of ZTF, ZStreak features an improved machine-learning model that can cope with the 10x data rate increment between PTF and ZTF. Since its first discovery on 2018 February 5 (2018 CL), ZTF/ZStreak has discovered 45 confirmed new NEAs over a total of 232 observable nights until 2018 December 31. Most of the discoveries are small NEAs, with diameters less than similar to 100. m. By analyzing the discovery circumstances, we find that objects having the first to last detection time interval under 2. hr are at risk of being lost. We will further improve real-time follow-up capabilities, and work on suppressing false positives using deep learning.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy