SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zazula Grant) "

Sökning: WFRF:(Zazula Grant)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barnett, Ross, et al. (författare)
  • Genomic Adaptations and Evolutionary History of the Extinct Scimitar-Toothed Cat, Homotherium latidens
  • 2020
  • Ingår i: Current Biology. - 0960-9822 .- 1879-0445.
  • Tidskriftsartikel (refereegranskat)abstract
    • Summary Homotherium was a genus of large-bodied scimitar-toothed cats, morphologically distinct from any extant felid species, that went extinct at the end of the Pleistocene [1, 2, 3, 4]. They possessed large, saber-form serrated canine teeth, powerful forelimbs, a sloping back, and an enlarged optic bulb, all of which were key characteristics for predation on Pleistocene megafauna [5]. Previous mitochondrial DNA phylogenies suggested that it was a highly divergent sister lineage to all extant cat species [6, 7, 8]. However, mitochondrial phylogenies can be misled by hybridization [9], incomplete lineage sorting (ILS), or sex-biased dispersal patterns [10], which might be especially relevant for Homotherium since widespread mito-nuclear discrepancies have been uncovered in modern cats [10]. To examine the evolutionary history of Homotherium, we generated a ∼7x nuclear genome and a ∼38x exome from H. latidens using shotgun and target-capture sequencing approaches. Phylogenetic analyses reveal Homotherium as highly divergent (∼22.5 Ma) from living cat species, with no detectable signs of gene flow. Comparative genomic analyses found signatures of positive selection in several genes, including those involved in vision, cognitive function, and energy consumption, putatively consistent with diurnal activity, well-developed social behavior, and cursorial hunting [5]. Finally, we uncover relatively high levels of genetic diversity, suggesting that Homotherium may have been more abundant than the limited fossil record suggests [3, 4, 11, 12, 13, 14]. Our findings complement and extend previous inferences from both the fossil record and initial molecular studies, enhancing our understanding of the evolution and ecology of this remarkable lineage.
  •  
2.
  • Bergström, Anders, et al. (författare)
  • Grey wolf genomic history reveals a dual ancestry of dogs
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 607:7918, s. 313-320
  • Tidskriftsartikel (refereegranskat)abstract
    • The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000–30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.
  •  
3.
  • Campos, Paula F, et al. (författare)
  • Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics
  • 2010
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 107:12, s. 5675-5680
  • Tidskriftsartikel (refereegranskat)abstract
    • The causes of the late Pleistocene megafaunal extinctions are poorly understood. Different lines of evidence point to climate change, the arrival of humans, or a combination of these events as the trigger. Although many species went extinct, others, such as caribou and bison, survived to the present. The musk ox has an intermediate story: relatively abundant during the Pleistocene, it is now restricted to Greenland and the Arctic Archipelago. In this study, we use ancient DNA sequences, temporally unbiased summary statistics, and Bayesian analytical techniques to infer musk ox population dynamics throughout the late Pleistocene and Holocene. Our results reveal that musk ox genetic diversity was much higher during the Pleistocene than at present, and has undergone several expansions and contractions over the past 60,000 years. Northeast Siberia was of key importance, as it was the geographic origin of all samples studied and held a large diverse population until local extinction at approximately 45,000 radiocarbon years before present ((14)C YBP). Subsequently, musk ox genetic diversity reincreased at ca. 30,000 (14)C YBP, recontracted at ca. 18,000 (14)C YBP, and finally recovered in the middle Holocene. The arrival of humans into relevant areas of the musk ox range did not affect their mitochondrial diversity, and both musk ox and humans expanded into Greenland concomitantly. Thus, their population dynamics are better explained by a nonanthropogenic cause (for example, environmental change), a hypothesis supported by historic observations on the sensitivity of the species to both climatic warming and fluctuations.
  •  
4.
  • Evans, David C., et al. (författare)
  • Vertebrate fossils (Dinosauria) from the Bonnet Plume Formation, Yukon Territory, Canada
  • 2012
  • Ingår i: Canadian journal of earth sciences (Print). - : NRC Research Press. - 0008-4077 .- 1480-3313. ; 49:2, s. 396-411
  • Tidskriftsartikel (refereegranskat)abstract
    • Dinosaurs and other terrestrial vertebrates are poorly documented in the Mesozoic of the Canadian polar region. Here, we provide a complete review of the Upper Cretaceous (Maastrichtian) vertebrate fauna of the Bonnet Plume Formation in the northeastern Yukon Territory, Canada, which includes the description of the first newly collected dinosaur bones from this unit in almost half a century. Previously reported fragmentary dinosaur remains collected in the early 1960’s pertain to an indeterminate hadrosaurid. New material includes a poorly preserved forelimb bone and a pedal phalanx. These new remains pertain to at least one species of non-hadrosaurid ornithischian dinosaur, and the humerus is tentatively referred to a small-bodied basal ornithopod. The new vertebrate fossils from the Bonnet Plume Formation provide further evidence of vertebrates from this unit. However, directed field surveys in 2008 and 2009 suggest that vertebrate fossils are not abundant. A review of the known localities of terrestrial Mesozoic vertebrates from the Canadian Arctic indicate that it had a relatively diverse community of terrestrial vertebrates, including dinosaurs, during the Late Cretaceous, but emphasizes our limited knowledge of the Mesozoic Arctic and considerable potential for future exploration and discovery.
  •  
5.
  • Lorenzen, Eline D., et al. (författare)
  • Species-specific responses of Late Quaternary megafauna to climate and humans
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 479:7373, s. 359-364
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.
  •  
6.
  • Orlando, Ludovic, et al. (författare)
  • Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 499:7456, s. 74-
  • Tidskriftsartikel (refereegranskat)abstract
    • The rich fossil record of equids has made them a model for evolutionary processes(1). Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP)(2,3). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. prze-walskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5 million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus(4,5). We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski's and domestic horse populations diverged 38-72 kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski's horse investigated. This supports the contention that Przewalski's horses represent the last surviving wild horse population(6). We find similar levels of genetic variation among Przewalski's and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication.
  •  
7.
  • Tseng, Z. Jack, et al. (författare)
  • First fossils of hyenas (Chasmaporthetes, Hyaenidae, Carnivora) from north of the Arctic Circle
  • 2019
  • Ingår i: Open Quaternary. - : Ubiquity Press, Ltd.. - 2055-298X. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The northern region of Beringia is ecologically and biogeographically significant as a corridor for biotic dispersals between the Old and New Worlds. Large mammalian predators from Beringia are exceedingly rare in the fossil record, even though carnivore diversity in the past was much higher than it is in this region at present. Here we report the first fossils of cursorial hyenas, Chasmaporthetes, in Beringia and north of the Arctic Circle. Two isolated teeth recovered in the Old Crow Basin, Yukon Territory, Canada, were identified amongst over 50,000 known fossil mammal specimens recovered from over a century of collecting in the Old Crow Basin. These rare records fill an important intermediary locale in the more than 10,000 km geographic distance between previously known New and Old World records of this lineage. The Pleistocene age of these fossils, together with its Arctic Circle occurrence, necessitate a rethinking of the role of large-bodied hunter-scavengers in Ice Age megafaunas in North America, and the implications of lacking an important energy flow modifier in present day North American food webs.
  •  
8.
  • Vavrek, Matthew J., et al. (författare)
  • A Paleogene flora from the upper Bonnet Plume Formation of northeast Yukon Territory, Canada
  • 2012
  • Ingår i: Canadian journal of earth sciences (Print). - : NRC Research Press. - 0008-4077 .- 1480-3313. ; 49:3, s. 547-558
  • Tidskriftsartikel (refereegranskat)abstract
    • Palaeontological exploration of the Bonnet Plume Basin in northwestern Yukon Territory, Canada, has revealed a Late Paleocene to Early Eocene macrofloral assemblage from a channel fill deposit. The flora is typified by cosmopolitan taxa and dominated by deciduous angiosperms, with the notable presence of Zizyphoides, Ettingshausenia, and Corylites. Floras with a similar composition are known from Late Cretaceous through Early Eocene deposits in Alaska and the Canadian Arctic Archipelago, where they have been interpreted as evidence for warm, equable temperatures. This collection represents the most diverse known Paleogene plant macrofossil assemblage from the Yukon Territory and helps to expand our knowledge of ancient high-latitude floras.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy