SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zopounidis J. P.) "

Sökning: WFRF:(Zopounidis J. P.)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aalbers, Jelle, et al. (författare)
  • Solar neutrino detection sensitivity in DARWIN via electron scattering
  • 2020
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 80:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We detail the sensitivity of the proposed liquid xenon DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: pp, 7Be, 13N, 15O and pep. The precision of the 13N, 15O and pep components is hindered by the double-beta decay of 136Xe and, thus, would benefit from a depleted target. A high-statistics observation of pp neutrinos would allow us to infer the values of the electroweak mixing angle, sin2 theta w, and the electron-type neutrino survival probability, Pee, in the electron recoil energy region from a few keV up to 200 keV for the first time, with relative precision of 5% and 4%, respectively, with 10 live years of data and a 30 tonne fiducial volume. An observation of pp and 7Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high- (GS98) and low-metallicity (AGS09) solar models with 2.1-2.5 sigma significance, independent of external measurements from other experiments or a measurement of 8B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of 131Xe.
  •  
2.
  • Aprile, E., et al. (författare)
  • Emission of single and few electrons in XENON1T and limits on light dark matter
  • 2022
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 106:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Delayed single- and few-electron emissions plague dual-phase time projection chambers, limiting their potential to search for light-mass dark matter. This paper examines the origins of these events in the XENON1T experiment. Characterization of the intensity of delayed electron backgrounds shows that the resulting emissions are correlated, in time and position, with high-energy events and can effectively be vetoed. In this work we extend previous S2-only analyses down to a single electron. From this analysis, after removing the correlated backgrounds, we observe rates <30 events/(electron×kg×day) in the region of interest spanning 1 to 5 electrons. We derive 90% confidence upper limits for dark matter-electron scattering, first direct limits on the electric dipole, magnetic dipole, and anapole interactions, and bosonic dark matter models, where we exclude new parameter space for dark photons and solar dark photons.
  •  
3.
  • Aprile, E., et al. (författare)
  • Material radiopurity control in the XENONnT experiment
  • 2022
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 82:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The selection of low-radioactive construction materials is of the utmost importance for rare-event searches and thus critical to the XENONnT experiment. Results of an extensive radioassay program are reported, in which material samples have been screened with gamma-ray spectroscopy, mass spectrometry, and 222Rn emanation measurements. Furthermore, the cleanliness procedures applied to remove or mitigate surface contamination of detector materials are described. Screening results, used as inputs for a XENONnT Monte Carlo simulation, predict a reduction of materials background (∼∼17%) with respect to its predecessor XENON1T. Through radon emanation measurements, the expected 222Rn activity concentration in XENONnT is determined to be 4.2 (+0.5−0.7) μBq/kg, a factor three lower with respect to XENON1T. This radon concentration will be further suppressed by means of the novel radon distillation system.
  •  
4.
  • Aprile, E., et al. (författare)
  • Light Dark Matter Search with Ionization Signals in XENON1T
  • 2019
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 123:25
  • Tidskriftsartikel (refereegranskat)abstract
    • We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22 +/- 3) tonne day. Above similar to 0.4 keV(ee), we observe <1 event/(tonne day keV(ee)), which is more than 1000 times lower than in similar searches with other detectors. Despite observing a higher rate at lower energies, no DM or CEvNS detection may be claimed because we cannot model all of our backgrounds. We thus exclude new regions in the parameter spaces for DM-nucleus scattering for DM masses m(chi) within 3-6 GeV/c(2), DM-electron scattering for m(chi) > 30 MeV/c(2), and absorption of dark photons and axionlike particles for m(chi) within 0.186-1 keV/c(2).
  •  
5.
  • Aprile, E., et al. (författare)
  • Search for Coherent Elastic Scattering of Solar B-8 Neutrinos in the XENON1T Dark Matter Experiment
  • 2021
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 126:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a search for nuclear recoil signals from solar B-8 neutrinos elastically scattering off xenon nuclei in XENON1T data, lowering the energy threshold from 2.6 to 1.6 keV. We develop a variety of novel techniques to limit the resulting increase in backgrounds near the threshold. No significant B-8 neutrinolike excess is found in an exposure of 0.6 t x y. For the first time, we use the nondetection of solar neutrinos to constrain the light yield from 1-2 keV nuclear recoils in liquid xenon, as well as nonstandard neutrino-quark interactions. Finally, we improve upon world-leading constraints on dark matter-nucleus interactions for dark matter masses between 3 and 11 GeV c(-2) by as much as an order of magnitude.
  •  
6.
  • Aprile, E., et al. (författare)
  • Search for inelastic scattering of WIMP dark matter in XENON1T
  • 2021
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 103:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the results of a search for the inelastic scattering of weakly interacting massive particles (WIMPs) in the XENON1T dark matter experiment. Scattering off Xe-129 is the most sensitive probe of inelastic WIMP interactions, with a signature of a 39.6 keV deexcitation photon detected simultaneously with the nuclear recoil. Using an exposure of 0.83 tonne-years, we find no evidence of inelastic WIMP scattering with a significance of more than 2 sigma. A profile-likelihood ratio analysis is used to set upper limits on the cross section of WIMP-nucleus interactions. We exclude new parameter space for WIMPs heavier than 100 GeV/c(2), with the strongest upper limit of 3.3 x 10(-39) cm(2) for 130 GeV/c(2) WIMPs at 90% confidence level.
  •  
7.
  • Aprile, E., et al. (författare)
  • Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T
  • 2019
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 123:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above similar to 5 GeV/c(2), but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, which leads to the excitation and ionization of the recoiling atom (the Migdal effect) or the emission of a bremsstrahlung photon. In this Letter, we report on a probe of low-mass dark matter with masses down to about 85 MeV/c(2) by looking for electronic recoils induced by the Migdal effect and bremsstrahlung using data from the XENON1T experiment. Besides the approach of detecting both scintillation and ionization signals, we exploit an approach that uses ionization signals only, which allows for a lower detection threshold. This analysis significantly enhances the sensitivity of XENON1T to light dark matter previously beyond its reach.
  •  
8.
  • Aprile, E., et al. (författare)
  • Energy resolution and linearity of XENON1T in the MeV energy range
  • 2020
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 80:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Xenon dual-phase time projection chambers designed to search for weakly interacting massive particles have so far shown a relative energy resolutionwhich degrades with energy above similar to 200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of Xe-136 at its Q value, Q(beta beta) similar or equal to 2.46 MeV. For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at 1 sigma/mu is as low as (0.80 +/- 0.02)% in its one-ton fiducial mass, and for single-site interactions at Q(beta beta). We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events.
  •  
9.
  • Aprile, E., et al. (författare)
  • First Results on the Scalar WIMP-Pion Coupling, Using the XENON1T Experiment
  • 2019
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 122:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We present first results on the scalar coupling of weakly interacting massive particles (WIMPs) to pions from 1 t yr of exposure with the XENON1T experiment. This interaction is generated when the WIMP couples to a virtual pion exchanged between the nucleons in a nucleus. In contrast to most nonrelativistic operators, these pion-exchange currents can be coherently enhanced by the total number of nucleons and therefore may dominate in scenarios where spin-independent WIMP-nucleon interactions are suppressed. Moreover, for natural values of the couplings, they dominate over the spin-dependent channel due to their coherence in the nucleus. Using the signal model of this new WIMP-pion channel, no significant excess is found, leading to an upper limit cross section of 6.4 x 10(-46) cm(2) (90% confidence level) at 30 GeV/c(2) WIMP mass.
  •  
10.
  • Aprile, E., et al. (författare)
  • Excess electronic recoil events in XENON1T
  • 2020
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 102:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We report results from searches for new physics with low-energy electronic recoil data recorded with the XENONIT detector. With an exposure of 0.65 tonne-years and an unprecedentedly low background rate of 76 +/- 2(stat) events/(tonne x year x keV) between 1 and 30 keV, the data enable one of the most sensitive searches for solar axions, an enhanced neutrino magnetic moment using solar neutrinos, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4 sigma significance, and a three-dimensional 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by g(ae) < 3.8 x 10(-12), g(ae)g(an)(eff) < 4.8 x 10(-18), and g(ae)g(a gamma) < 7.7 x 10(-22) GeV-1, and excludes either g(ae) = 0 or g(ae)g(a gamma) = g(ae)ge(an)(eff), = 0. The neutrino magnetic moment signal is similarly favored over background at 3.2 sigma, and a confidence interval of mu(nu) is an element of (1.4, 2.9) x 10(-11) mu(B) (90% C.L.) is reported. Both results are in strong tension with stellar constraints. The excess can also be explained by beta decays of tritium at 3.2 sigma significance with a corresponding tritium concentration in xenon of (6.2 +/- 2.0) x 10(-25) mol/mol. Such a trace amount can neither be confirmed nor excluded with current knowledge of its production and reduction mechanisms. The significances of the solar axion and neutrino magnetic moment hypotheses arc decreased to 2.0 sigma and 0.9 sigma, respectively, if an unconstrained tritium component is included in the fitting. With respect to bosonic dark matter, the excess favors a monoenergetic peak at (2.3 +/- 0.2) keV (68% C.L.) with a 3.0 sigma global (4.0 sigma local) significance over background. This analysis sets the most restrictive direct constraints to date on pseudoscalar and vector bosonic dark matter for most masses between 1 and 210 keV/c(2). We also consider the possibility that Ar-37 may be present in the detector, yielding a 2.82 keV peak from electron capture. Contrary to tritium, the Ar-37 concentration can be tightly constrained and is found to be negligible.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy