SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zozoulenko Igor V.) "

Sökning: WFRF:(Zozoulenko Igor V.)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Sekretareva, Alina, et al. (författare)
  • Total phenol analysis of water using a laccase-based microsensor array
  • 2015
  • Ingår i: Program of the XXIII International Symposium on Bioelectrochemistry and Bioenergetics of the Bioelectrochemical Society. 14-18 June, 2015. Malmö, Sweden. - Lausanne : Bioelectrochemical Society. ; , s. 155-155
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The monitoring of phenolic compounds in raw waters and wastewaters is of great importance for environmental control. Use of biosensors for rapid, specific and simple detection of phenolic compounds is a promising approach. A number of biosensors have been developed for phenol detection. A general drawback of previously reported biosensors is their insufficient detection limits for phenols in water samples. One way to improve the detection limit is by the use of microelectrodes.Microband design of the microelectrodes combines convergent mass transport due to the microscale width and high output currents due to the macroscopic length. Among the various techniques available for microband electrode fabrication, we have chosen screen-printing which is a cost-effective production method.In this study, we report on the development of a laccase-based microscale biosensor operating under a convergent diffusion regime. Screen-printing followed by simple cutting was utilized for the fabrication of graphite microbands as a platform for further covalent immobilization of laccase. Numerical simulations, utilizing the finite element method with periodic boundary conditions, were used for modeling the voltammetric response of the developed microband electrodes. Anodization followed by covalent immobilization was used for the electrode modification with laccase. Direct and mediated laccase bioelectrocatalytic oxidation of phenols was studied on macro- and microscale graphite electrodes. Significant enhancement of the analytical performance was achieved by the establishment of convergent diffusion in the microscale sensor. Finally, the developed microsensor was utilized to monitor phenolic compounds in real waste water.
  •  
3.
  • Sekretaryova, Alina, et al. (författare)
  • Total phenol analysis of weakly supported water using a laccase-based microband biosensor.
  • 2016
  • Ingår i: Analytica Chimica Acta. - : Elsevier. - 0003-2670 .- 1873-4324. ; 907, s. 45-53
  • Tidskriftsartikel (refereegranskat)abstract
    • The monitoring of phenolic compounds in wastewaters in a simple manner is of great importance for environmental control. Here, a novel screen printed laccase-based microband array for in situ, total phenol estimation in wastewaters and for water quality monitoring without additional sample pre-treatment is presented. Numerical simulations using the finite element method were utilized for the characterization of micro-scale graphite electrodes. Anodization followed by covalent modification was used for the electrode functionalization with laccase. The functionalization efficiency and the electrochemical performance in direct and catechol-mediated oxygen reduction were studied at the microband laccase electrodes and compared with macro-scale electrode structures. The reduction of the dimensions of the enzyme biosensor, when used under optimized conditions, led to a significant improvement in its analytical characteristics. The elaborated microsensor showed fast responses towards catechol additions to tap water – a weakly supported medium – characterized by a linear range from 0.2 to 10 μM, a sensitivity of 1.35 ± 0.4 A M−1 cm−2 and a dynamic range up to 43 μM. This enhanced laccase-based microsensor was used for water quality monitoring and its performance for total phenol analysis of wastewater samples from different stages of the cleaning process was compared to a standard method.
  •  
4.
  • Stavrinidou, Eleni, et al. (författare)
  • In vivo polymerization and manufacturing of wires and supercapacitors in plants
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:11, s. 2807-2812
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronic plants, e-Plants, are an organic bioelectronic platform that allows electronic interfacing with plants. Recently we have demonstrated plants with augmented electronic functionality. Using the vascular system and organs of a plant, we manufactured organic electronic devices and circuits in vivo, leveraging the internal structure and physiology of the plant as the template, and an integral part of the devices. However, this electronic functionality was only achieved in localized regions, whereas new electronic materials that could be distributed to every part of the plant would provide versatility in device and circuit fabrication and create possibilities for new device concepts. Here we report the synthesis of such a conjugated oligomer that can be distributed and form longer oligomers and polymer in every part of the xylem vascular tissue of a Rosa floribunda cutting, forming long-range conducting wires. The plant’s structure acts as a physical template, whereas the plant’s biochemical response mechanism acts as the catalyst for polymerization. In addition, the oligomer can cross through the veins and enter the apoplastic space in the leaves. Finally, using the plant’s natural architecture we manufacture supercapacitors along the stem. Our results are preludes to autonomous energy systems integrated within plants and distribute interconnected sensor-actuator systems for plant control and optimization
  •  
5.
  • Evaldsson, Martin, et al. (författare)
  • Edge disorder induced Anderson localization and conduction gap in graphene nanoribbons
  • 2008
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society. - 1098-0121 .- 1550-235X. ; 78:16, s. 161407-
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the effect of the edge disorder on the conductance of the graphene nanoribbons (GNRs).We find that only very modest edge disorder is sufficient to induce the conduction energy gap inthe otherwise metallic GNRs and to lift any difference in the conductance between nanoribbonsof different edge geometry. We relate the formation of the conduction gap to the pronounced edgedisorder induced Anderson-type localization which leads to the strongly enhanced density of states atthe edges, formation of surface-like states and to blocking of conductive paths through the ribbons.
  •  
6.
  • Evaldsson, Martin, et al. (författare)
  • Spin polarization in modulation-doped GaAs quantum wires
  • 2008
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society. - 1098-0121 .- 1550-235X. ; 77:16, s. 165306-1-165306-7
  • Tidskriftsartikel (refereegranskat)abstract
    • We study spin polarization in a split-gate quantum wire focusing on the effect of a realistic smooth potential due to remote donors. Electron interaction and spin effects are included within the density functional theory in the local spin density approximation. We find that depending on the electron density, the spin polarization exhibits qualitatively different features. For the case of relatively high electron density, when the Fermi energy EF exceeds a characteristic strength of a long-range impurity potential Vdonors, the density spin polarization inside the wire is practically negligible and the wire conductance is spin-degenerate. When the density is decreased such that EF approaches Vdonors, the electron density and conductance quickly become spin polarized. With further decrease of the density the electrons are trapped inside the lakes (droplets) formed by the impurity potential and the wire conductance approaches the pinch-off regime. We discuss the limitations of the density functional theory in the local spin density approximation in this regime and compare the obtained results with available experimental data.
  •  
7.
  • Evaldsson, Martin, et al. (författare)
  • Spin polarization in open quantum dots
  • 2006
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 73:3, s. 035319-
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate coherent transport through open lateral quantum dots using recursive Green's function technique, incorporating exchange-correlation effects within the density functional theory (DFT) in the local spin-density approximation. At low electron densities the current is spin polarized and electron density in the dot shows a strong spin polarization. As the electron density increases the spin polarization in the dot gradually diminishes. These findings are consistent with available experimental observations. Results of our DFT-based modeling indicate that utilization of the simplified approaches that use phenomenological parameters and/or model Hamiltonians might not be always reliable for theoretical predictions as well as interpretations of the experiments.
  •  
8.
  • Evaldsson, Martin, et al. (författare)
  • Spin splitting in open quantum dots
  • 2004
  • Ingår i: Europhysics letters. - : IOP Publishing. - 0295-5075 .- 1286-4854. ; 68:2, s. 261-267
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate that the magnetoconductance of small lateral quantum dots in the strongly coupled regime (i.e. when the leads can support one or more propagating modes) shows a pronounced splitting of the conductance peaks and dips which persists over a wide range of magnetic fields (from zero field to the edge-state regime) and is virtually independent of the magnetic field strength. Our numerical analysis of the conductance based on the Hubbard Hamiltonian demonstrates that this is essentially a many-body/spin effect that can be traced to a splitting of degenerate levels in the corresponding closed dot. The above effect in open dots can be regarded as a counterpart of the Coulomb-blockade effect in weakly coupled dots, with the difference, however, that the splitting of the peaks originates from interactions between electrons of opposite spin.
  •  
9.
  • Franco Gonzalez, Juan Felipe, et al. (författare)
  • Morphology of a self-doped conducting oligomer for green energy applications
  • 2017
  • Ingår i: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 9:36, s. 13717-13724
  • Tidskriftsartikel (refereegranskat)abstract
    • A recently synthesized self-doped conducting oligomer, salt of bis[3,4-ethylenedioxythiophene]3thiophene butyric acid, ETE-S, is a novel promising material for green energy applications. Recently, it has been demonstrated that it can polymerize in vivo, in plant systems, leading to a formation of long-range conducting wires, charge storage and supercapacitive behaviour of living plants. Here we investigate the morphology of ETE-S combining the experimental characterisation using Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) and atomistic molecular dynamics (MD) simulations. The GIWAXS measurements reveal a formation of small crystallites consisting of π–π stacked oligomers (with the staking distance 3.5 Å) that are further organized in h00 lamellae. These experimental results are confirmed by MD calculations, where we calculated the X-ray diffraction pattern and the radial distribution function for the distance between ETE-S chains. Our MD simulations also demonstrate the formation of the percolative paths for charge carriers that extend throughout the whole structure, despite the fact that the oligomers are short (6–9 rings) and crystallites are thin along the π–π stacking direction, consisting of only two or three π–π stacked oligomers. The existence of the percolative paths explains the previously observed high conductivity in in vivo polymerized ETE-S. We also explored the geometrical conformation of ETE-S oligomers and the bending of their aliphatic chains as a function of the oligomer lengths.
  •  
10.
  • Rahachou, Aliaksandr, et al. (författare)
  • Light propagation in nanorod arrays
  • 2007
  • Ingår i: Journal of optics. A: Pure and applied optics. - : IOP Publishing. - 1464-4258 .- 1741-3567. ; 9:3, s. 265-270
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the propagation of TM- and TE-polarized light in two-dimensional arrays of silver nanorods of various diameters in a gelatin background. We calculate the transmittance, reflectance and absorption of arranged and disordered nanorod arrays and compare the exact numerical results with the predictions of the Maxwell–Garnett effective-medium theory. We show that interactions between nanorods, multipole contributions and formations of photonic gaps affect strongly the transmittance spectra that cannot be accounted for in terms of the conventional effective-medium theory. We also demonstrate and explain the degradation of the transmittance in arrays with randomly located rods as well as the weak influence of their fluctuating diameter. For TM modes we outline the importance of the skin effect, which causes the full reflection of the incoming light. We then illustrate the possibility of using periodic arrays of nanorods as high-quality polarizers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy