SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(de Laval Philip) "

Sökning: WFRF:(de Laval Philip)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Laval, Philip, et al. (författare)
  • Acute effects of haemodialysis on circulating microparticles
  • 2019
  • Ingår i: Clinical Kidney Journal. - : Oxford University Press (OUP). - 2048-8505 .- 2048-8513. ; 12:3, s. 456-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Microparticles (MPs) are small cell membrane-derived vesicles regarded as both biomarkers and mediators of biological effects. Elevated levels of MPs have previously been associated with endothelial dysfunction and predict cardiovascular death in patients with end-stage renal disease. The objective of this study was to measure change in MP concentrations in contemporary haemodialysis (HD).Methods. Blood was sampled from 20 consecutive HD patients before and 1h into the HD session. MPs were measured by flow cytometry and phenotyped based on surface markers.Results. Concentrations of platelet (CD41(+)) (P = 0.039), endothelial (CD62E(+)) (P = 0.004) andmonocyte-derived MPs (CD14(+)) (P<0.001) significantly increased during HD. Similarly, endothelial-(P = 0.007) and monocyte-derived MPs (P = 0.001) expressing tissue factor (TF) significantly increased as well as MPs expressing Klotho (P = 0.003) and receptor for advanced glycation end products (RAGE) (P = 0.009). Furthermore, MPs expressing platelet activationmarkers P-selectin (P = 0.009) and CD40L (P = 0.045) also significantly increased. The increase of endothelial (P = 0.034), monocyte (P = 0.014) and RAGE(+) MPs (P = 0.032) as well as TF+ platelet-derived MPs (P = 0.043) was significantly higher in patients treated with low-flux compared with high-flux dialysers.Conclusion. Dialysis triggers release of MPs of various origins with marked differences between high-flux and low-flux dialysers. The MPs carry surface molecules that could possibly influence coagulation, inflammation, oxidative stress and endothelial dysfunction. The clinical impact of these findings remains to be established in future studies.
  •  
2.
  • Wu, Ping-Hsun, 1982-, et al. (författare)
  • Novel biomarkers detected by proteomics predict death and cardiovascular events in hemodialysis patients
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Background. End-stage kidney disease increases mortality and the risk of cardiovascular (CV) disease. It is crucial to explore novel biomarkers to predict CV disease in the complex setting of patients receiving hemodialysis (HD). This study investigated the association between 92 targeted proteins with all-cause death, CV death, and composite vascular events (CVEs) in HD patients.Methods. From December 2010 to March 2011, 331 HD patients were included and followed prospectively for 5 years. Serum was analyzed for 92 CV-related proteins using Proseek Multiplex Cardiovascular I panel, a high-sensitivity assay based on proximity extension assay (PEA) technology. The association between biomarkers and all-cause death, CV death, and CVEs was evaluated by Cox-regression analyses.Results. Of the PEA-based proteins, we identified 20 proteins associated with risk of all-cause death, 7 proteins associated with risk of CV death, and 17 proteins associated with risk of CVEs, independent of established risk factors. Interleukin-8 (IL-8), T-cell immunoglobulin and mucin domain 1 (TIM-1), and C-C motif chemokine 20 (CCL20) were associated with increased risk of all-cause death, CV death, and CVE  in multivariable-adjusted models. Stem cell factor (SCF) and Galanin peptides (GAL) were associated with both decreased risk of all-cause death and CV death.Conclusions. IL-8, TIM-1, and CCL20 predicted death and CV outcomes in HD patients. Novel findings were that SCF and GAL were associated with a lower risk of all death and CV death. The SCF warrants further study with regards to its possible biological effect in HD patients.
  •  
3.
  • Wu, Ping-Hsun, 1982-, et al. (författare)
  • Novel Biomarkers Detected by Proteomics Predict Death and Cardiovascular Events in Hemodialysis Patients
  • 2022
  • Ingår i: Biomedicines. - : MDPI. - 2227-9059. ; 10:4
  • Tidskriftsartikel (refereegranskat)abstract
    • End-stage kidney disease increases mortality and the risk of cardiovascular (CV) disease. It is crucial to explore novel biomarkers to predict CV disease in the complex setting of patients receiving hemodialysis (HD). This study investigated the association between 92 targeted proteins with all-cause death, CV death, and composite vascular events (CVEs) in HD patients. From December 2010 to March 2011, 331 HD patients were included and followed prospectively for 5 years. Serum was analyzed for 92 CV-related proteins using Proseek Multiplex Cardiovascular I panel, a high-sensitivity assay based on proximity extension assay (PEA) technology. The association between biomarkers and all-cause death, CV death, and CVEs was evaluated using Cox-regression analyses. Of the PEA-based proteins, we identified 20 proteins associated with risk of all-cause death, 7 proteins associated with risk of CV death, and 17 proteins associated with risk of CVEs, independent of established risk factors. Interleukin-8 (IL-8), T-cell immunoglobulin and mucin domain 1 (TIM-1), and C-C motif chemokine 20 (CCL20) were associated with increased risk of all-cause death, CV death, and CVE in multivariable-adjusted models. Stem cell factor (SCF) and Galanin peptides (GAL) were associated with both decreased risk of all-cause death and CV death. In conclusion, IL-8, TIM-1, and CCL20 predicted death and CV outcomes in HD patients. Novel findings were that SCF and GAL were associated with a lower risk of all-cause death and CV death. The SCF warrants further study with regard to its possible biological effect in HD patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy