SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

AND är defaultoperator och kan utelämnas

Träfflista för sökning "hsv:(MEDICAL AND HEALTH SCIENCES) hsv:(Medical Biotechnology) hsv:(Biomaterials Science) "

Sökning: hsv:(MEDICAL AND HEALTH SCIENCES) hsv:(Medical Biotechnology) hsv:(Biomaterials Science)

  • Resultat 1-10 av 1371
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jing, Yujia, 1985 (författare)
  • Hyperthermia-responsive liposomal systems
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Abstract Sophisticated liposomal systems are emerging at an increasing rate to meet the demands for multifunctional drug carriers in chemotherapies in combined with hyperthermia. For example, liposomal drug carriers for temperature-controlled drug release under hyperthermic conditions have recently been tested in clinical trials. More advanced designs of liposomes are expected to release encapsulated contents and activate hidden surface-functions in response to heat stimulus. Towards this aim, the present thesis is focused on formulating asymmetric lipid systems that can preserve functional moieties, and reactivate the targeted function as well as release the encapsulated compounds upon local heating. The design of the asymmetric liposomal systems utilizes the heat-activated transmembrane lipid diffusion during gel to liquid-crystalline phase transitions of the lipid membranes.Rational design of advanced liposomal drug-delivery systems will require understanding of the physicochemical properties of lipid membranes under, e.g., hyperthermic conditions. Here, supported lipid membranes on planar solid surfaces were used for model studies of lipid composition yielding a gel to liquid crystalline phase-transition temperature in the range 40 – 45 °C. It was found that the liposome-to-membrane formation process is not only size-dependent but also governed by temperature. Two methods of preparing supported asymmetric lipid membranes were investigated. As a proof-of-concept, the upper leaflets were either replaced or chemically transformed by enzymatic hydrolysis. The processes were monitored using surface sensitive techniques such as quartz crystal microbalance with dissipation (QCM-D) and dual polarization interferometry (DPI). The asymmetric structures were stable at a room temperature, while lipid flip-flop was induced upon increasing of the temperature. Transmembrane lipid exchange in the asymmetric structure under hyperthermic conditions was demonstrated by detecting, through streptavidin binding, biotinylated lipids appearing at the top leaflet which were first located in the lower leaflet. The protocols developed for the supported lipid systems were adapted for the preparation of asymmetric liposomes. Biotinylated asymmetric liposomes were used as a model system to demonstrate the principle of heat-activated targeting of asymmetric liposomes to streptavidin-coated surfaces. More biologically relevant interaction was utilized to replace the biotin-streptavidin function, where asymmetric cationic liposomes were binding to anionic supported membrane immobilized surfaces upon heating. The described strategies for assembly of asymmetric supported membranes provide a guide to the development of multifunctional drug carriers. The protocols used in experiments with supported membranes were readily adapted to the preparation of asymmetric liposomes. The ongoing study tests the asymmetric liposomes in vitro, which is designed to demonstrate hyperthermia treatment can enhance accumulation of liposomes in FaDu cells, and at the same time activate release of the encapsulated components. The results of in vitro tests can be used to analyze the feasibility of utilizing the asymmetric liposomes as a platform in vivo to explore further improvement in their functions upon microwave hyperthermia.
  •  
2.
  • Orru, Anna Maria, 1976, et al. (författare)
  • AHA! festival 2015
  • 2015
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The AHA festival investigates the borders between art and science in a three-day event at the Chalmers University of Technology hosted by the Department of Architecture. An international festival intended to provide enlightening experiences, staging surprises, new thoughts and displaced perspectives that lead to alternative modes of thinking about the space between art and science. We invite scientists (physicists, historians, mathematicians, medical students), artists (dancers, musicians, painters, poets, chefs) and not least architects, who reside in these borderlands and wish to share their vision and work. The key intention is to celebrate both art and science as key knowledge building devices.
  •  
3.
  • Söderlund, Zackarias (författare)
  • Engineering the extracellular matrix to model diseases and orchestrate regeneration
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The extracellular matrix is not only a scaffold to which cells attach, but it is also a matrix that communicates cell signals. Because of the interplay between cells and the extracellular matrix, changes in the extracellular matrix can steer cell fate. This opens up the opportunity to design and engineer the extracellular matrix to communicate changes to the cells. Thus, this thesis has focused on understanding which parameters and signals influence cells, but also on how to utilise this knowledge to engineer a completely defined extracellular matrix. The extracellular matrix can be modulated in several ways, such as cell attachment, degradation properties, porosity, stiffness as well as being easily functionalised with molecules of interest using click chemistry.Two of the papers in this thesis focus on the development of new tools for glycosaminoglycan research to get a better understanding of how this can be modulated to steer cell signalling. Glycosaminoglycans bind growth factors, which can then either act as a co-receptor to increase the potency of the growth factor or to protect the growth factors from being broken down or inactivated. The tools that we have developed open the possibility to better study the production of glycosaminoglycans from different types of cells and better understand what changes occur in glycosaminoglycan synthesis during disease.The second two papers in this thesis focus on understanding the extracellular matrix. Article number one focuses on the effect of different extracellular matrices and stretch on cells and their secretome. Article number two, which has been the focus of this thesis, utilises the new findings in the other articles about glycosaminoglycans and the extracellular matrix to create a synthetic and defined extracellular matrix. This extracellular matrix is modified with glycosaminoglycans to have a slow release of growth factors to instruct cells to differentiate both in vitro and in vivo.
  •  
4.
  • Palmquist, Anders, 1977, et al. (författare)
  • Complex geometry and integrated macro-porosity: Clinical applications of electron beam melting to fabricate bespoke bone-anchored implants
  • 2023
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061 .- 1878-7568. ; 156, s. 125-145
  • Forskningsöversikt (refereegranskat)abstract
    • The last decade has witnessed rapid advancements in manufacturing technologies for biomedical implants. Additive manufacturing (or 3D printing) has broken down major barriers in the way of producing complex 3D geometries. Electron beam melting (EBM) is one such 3D printing process applicable to metals and alloys. EBM offers build rates up to two orders of magnitude greater than comparable laser-based technologies and a high vacuum environment to prevent accumulation of trace elements. These features make EBM particularly advantageous for materials susceptible to spontaneous oxidation and nitrogen pick-up when exposed to air (e.g., titanium and titanium-based alloys). For skeletal reconstruction(s), anatomical mimickry and integrated macro-porous architecture to facilitate bone ingrowth are undoubtedly the key features of EBM manufactured implants. Using finite element modelling of physiological loading conditions, the design of a prosthesis may be further personalised. This review looks at the many unique clinical applications of EBM in skeletal repair and the ground-breaking innovations in prosthetic rehabilitation. From a simple acetabular cup to the fifth toe, from the hand-wrist complex to the shoulder, and from vertebral replacement to cranio-maxillofacial reconstruction, EBM has experienced it all. While sternocostal reconstructions might be rare, the repair of long bones using EBM manufactured implants is becoming exceedingly frequent. Despite the various merits, several challenges remain yet untackled. Nevertheless, with the capability to produce osseointegrating implants of any conceivable shape/size, and permissive of bone ingrowth and functional loading, EBM can pave the way for numerous fascinating and novel applications in skeletal repair, regeneration, and rehabilitation. Statement of significance: Electron beam melting (EBM) offers unparalleled possibilities in producing contaminant-free, complex and intricate geometries from alloys of biomedical interest, including Ti6Al4V and CoCr. We review the diverse range of clinical applications of EBM in skeletal repair, both as mass produced off-the-shelf implants and personalised, patient-specific prostheses. From replacing large volumes of disease-affected bone to complex, multi-material reconstructions, almost every part of the human skeleton has been replaced with an EBM manufactured analog to achieve macroscopic anatomical-mimickry. However, various questions regarding long-term performance of patient-specific implants remain unaddressed. Directions for further development include designing personalised implants and prostheses based on simulated loading conditions and accounting for trabecular bone microstructure with respect to physiological factors such as patient's age and disease status.
  •  
5.
  • Apelgren, Peter, et al. (författare)
  • Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo.
  • 2017
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 12:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Cartilage repair and replacement is a major challenge in plastic reconstructive surgery. The development of a process capable of creating a patient-specific cartilage framework would be a major breakthrough. Here, we described methods for creating human cartilage in vivo and quantitatively assessing the proliferative capacity and cartilage-formation ability in mono- and co-cultures of human chondrocytes and human mesenchymal stem cells in a three-dimensional (3D)-bioprinted hydrogel scaffold. The 3D-bioprinted constructs (5 × 5 × 1.2 mm) were produced using nanofibrillated cellulose and alginate in combination with human chondrocytes and human mesenchymal stem cells using a 3D-extrusion bioprinter. Immediately following bioprinting, the constructs were implanted subcutaneously on the back of 48 nude mice and explanted after 30 and 60 days, respectively, for morphological and immunohistochemical examination. During explantation, the constructs were easy to handle, and the majority had retained their macroscopic grid appearance. Constructs consisting of human nasal chondrocytes showed good proliferation ability, with 17.2% of the surface areas covered with proliferating chondrocytes after 60 days. In constructs comprising a mixture of chondrocytes and stem cells, an additional proliferative effect was observed involving chondrocyte production of glycosaminoglycans and type 2 collagen. This clinically highly relevant study revealed 3D bioprinting as a promising technology for the creation of human cartilage.
  •  
6.
  • Dietrich, Franciele, et al. (författare)
  • Effect of storage and preconditioning of healing rat Achilles tendon on structural and mechanical properties
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Tendon tissue storage and preconditioning are often used in biomechanical experiments and whether this generates alterations in tissue properties is essential to know. The effect of storage and preconditioning on dense connective tissues, like tendons, is fairly understood. However, healing tendons are unlike and contain a loose connective tissue. Therefore, we investigated if storage of healing tendons in the fridge or freezer changed the mechanical properties compared to fresh tendons, using a pull-to-failure or a creep test. Tissue morphology and cell viability were also evaluated. Additionally, two preconditioning levels were tested. Rats underwent Achilles tendon transection and were euthanized 12 days postoperatively. Statistical analyzes were done with one-way ANOVA or Student’s t-test. Tissue force and stress were unaltered by storage and preconditioning compared to fresh samples, while high preconditioning increased the stiffness and modulus (p ≤ 0.007). Furthermore, both storage conditions did not modify the viscoelastic properties of the healing tendon, but altered transverse area, gap length, and water content. Cell viability was reduced after freezing. In conclusion, preconditioning on healing tissues can introduce mechanical data bias when having extensive tissue strength diversity. Storage can be used before biomechanical testing if structural properties are measured on the day of testing.
  •  
7.
  • Sukhovey, Yurij G., et al. (författare)
  • Difference between the biologic and chronologic age as an individualized indicator for the skin care intensity selection : skin topography and immune system state studies, parameter correlations with age difference
  • 2019
  • Ingår i: Biomedical Dermatology. - : Springer Nature. - 2398-8460. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Present research addresses the issue of skin aging and corresponding skin treatment individualization. Particular research question was on the developing of simplified criterion supporting patient-specific decision on the necessity and intensity of skin treatment. Basing on the published results and a wide pool of experimental data, we have formulated a hypothesis that a difference between biologic and chronologic age can be used as an express criterion of skin aging.Methods: In present paper, we report the results of studies with 80 volunteers between 15 and 65 years of age, linking parameters reflecting immune state, skin state, and topography to the difference between biologic and chronologic age. Facial skin topography, skin moisture, sebum level, and skin elasticity were studied using commercial devices. Blood immunology studies were performed using venous blood samples. Correlations between all measured parameters and age difference were calculated. Also, cross correlations between skin cell profile and blood immune profile parameters, and skin roughness parameters were calculated.Results: Age dependencies of the blood immunological parameters on the biologic and chronologic age difference are less pronounced as compared to the changes in skin cell profile parameters. However, the changes in the tendencies when biologic age becomes equal to chronologic one are visible for all studied parameters.All measured skin roughness parameters show correlations with age difference, but average skin roughness and depth of the deepest profile valley have the largest correlation coefficient values. Many of the measured skin cell profile and blood immunology parameters show strong correlations with average skin roughness and deepest profile valley, with some of the coefficients exceeding 0.5–0.6.Conclusions: Basing on own experiments and published research results, it is possible to suggest using the difference between calculated biologic age and chronologic age as an individualized criterion supporting decisions on skin treatment strategy. Further research involving larger numbers of participants and aiming on optimizing the expressions for calculating biologic age could lead to reliable and easily available express criterion supporting the decision making for an individualized skin treatment.
  •  
8.
  • Cardemil, Carina, et al. (författare)
  • Strontium-doped calcium phosphate and hydroxyapatite granules promote different inflammatory and bone remodelling responses in normal and ovariectomised rats.
  • 2013
  • Ingår i: PLosOne. - : Public Library of Science (PLoS). - 1932-6203. ; 8:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The healing of bone defects may be hindered by systemic conditions such as osteoporosis. Calcium phosphates, with or without ion substitutions, may provide advantages for bone augmentation. However, the mechanism of bone formation with these materials is unclear. The aim of this study was to evaluate the healing process in bone defects implanted with hydroxyapatite (HA) or strontium-doped calcium phosphate (SCP) granules, in non-ovariectomised (non-OVX) and ovariectomised (OVX) rats. After 0 (baseline), six and 28d, bone samples were harvested for gene expression analysis, histology and histomorphometry. Tumour necrosis factor-α (TNF-α), at six days, was higher in the HA, in non-OVX and OVX, whereas interleukin-6 (IL-6), at six and 28d, was higher in SCP, but only in non-OVX. Both materials produced a similar expression of the receptor activator of nuclear factor kappa-B ligand (RANKL). Higher expression of osteoclastic markers, calcitonin receptor (CR) and cathepsin K (CatK), were detected in the HA group, irrespective of non-OVX or OVX. The overall bone formation was comparable between HA and SCP, but with topological differences. The bone area was higher in the defect centre of the HA group, mainly in the OVX, and in the defect periphery of the SCP group, in both non-OVX and OVX. It is concluded that HA and SCP granules result in comparable bone formation in trabecular bone defects. As judged by gene expression and histological analyses, the two materials induced different inflammatory and bone remodelling responses. The modulatory effects are associated with differences in the spatial distribution of the newly formed bone.
  •  
9.
  • Karlsson, Johan, 1984, et al. (författare)
  • Stem cell homing using local delivery of plerixafor and stromal derived growth factor-1alpha for improved bone regeneration around Ti-implants
  • 2016
  • Ingår i: Journal of Biomedical Materials Research - Part A. - : Wiley. - 1552-4965 .- 1549-3296. ; 104:10, s. 2466-2475
  • Tidskriftsartikel (refereegranskat)abstract
    • Triggering of the early healing events, including the recruitment of progenitor cells, has been suggested to promote bone regeneration. In implantology, local drug release technologies could provide an attractive approach to promote tissue regeneration. In this study, we targeted the chemotactic SDF-1a/CXCR4 axis that is responsible e.g. for the homing of stem cells to trauma sites. This was achieved by local delivery of plerixafor, an antagonist to CXCR4, and/or SDF-1a from titanium implants coated with mesoporous titania thin films with a pore size of 7.5 nm. In vitro drug delivery experiments demonstrated that the mesoporous coating provided a high drug loading capacity and controlled release. The subsequent in vivo study in rat tibia showed beneficial effects with respect to bone-implant anchorage and bone-formation along the surface of the implants when plerixafor and SDF-1a were delivered locally. The effect was most prominent by the finding that the combination of the drugs significantly improved the mechanical bone anchorage. These observations suggest that titanium implants with local delivery of drugs for enhanced local recruitment of progenitor cells have the ability to promote osseointegration. This approach may provide a potential strategy for the development of novel implant treatments.
  •  
10.
  • Andersson, Marlene, et al. (författare)
  • Biomimetic spinning of artificial spider silk from a chimeric minispidroin
  • 2017
  • Ingår i: Nature Chemical Biology. - : Springer Science and Business Media LLC. - 1552-4450 .- 1552-4469. ; 254
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein we present a chimeric recombinant spider silk protein (spidroin) whose aqueous solubility equals that of native spider silk dope and a spinning device that is based solely on aqueous buffers, shear forces and lowered pH. The process recapitulates the complex molecular mechanisms that dictate native spider silk spinning and is highly efficient; spidroin from one liter of bacterial shake-flask culture is enough to spin a kilometer of the hitherto toughest as-spun artificial spider silk fiber.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 1371
Typ av publikation
tidskriftsartikel (907)
konferensbidrag (261)
doktorsavhandling (75)
forskningsöversikt (40)
annan publikation (38)
bokkapitel (31)
visa fler...
licentiatavhandling (11)
rapport (3)
samlingsverk (redaktörskap) (2)
bok (1)
patent (1)
recension (1)
visa färre...
Typ av innehåll
refereegranskat (1124)
övrigt vetenskapligt/konstnärligt (239)
populärvet., debatt m.m. (8)
Författare/redaktör
Thomsen, Peter, 1953 (280)
Palmquist, Anders, 1 ... (147)
Engqvist, Håkan (110)
Esposito, Marco, 196 ... (102)
Omar, Omar (92)
Persson, Cecilia (78)
visa fler...
Emanuelsson, Lena, 1 ... (74)
Shah, Furqan A. (69)
Xia, Wei (55)
Trobos, Margarita, 1 ... (44)
Lausmaa, Jukka (39)
Johansson, Anna, 196 ... (38)
Suska, Felicia, 1974 (38)
Brånemark, Rickard, ... (37)
Engqvist, Håkan, 197 ... (31)
Johansson, Martin L (30)
Felice, Pietro (25)
Svensson, Sara, 1981 (24)
Tengvall, Pentti (23)
Almqvist, Sofia, 198 ... (23)
Werthén, Maria, 1957 (22)
Lennerås, Maria, 198 ... (22)
Lindahl, Carl (21)
Grandfield, Kathryn (21)
Gatenholm, Paul, 195 ... (20)
Norlindh, Birgitta, ... (20)
Rising, Anna (18)
Albrektsson, Tomas, ... (17)
Hedhammar, My (17)
Johansson, Jan (16)
Nilsson, Bo (16)
Ballo, Ahmed, 1978 (16)
Larsson, Sune (15)
Malmström, Johan, 19 ... (15)
Isaksson, Hanna (15)
Griffith, May (15)
Öhman, Caroline (15)
Dahlin, Christer, 19 ... (15)
Andersson, Martin, 1 ... (15)
Procter, Philip (15)
Hedhammar, My, Profe ... (15)
Buti, J. (15)
Felice, P. (15)
Barausse, Carlo (15)
Jansson, Ronnie (15)
Ekström, Karin, 1978 (15)
Nilsson Ekdahl, Kris ... (14)
Gretzer, Christina, ... (14)
Pistilli, Roberto (14)
Jarmar, Tobias (14)
visa färre...
Lärosäte
Göteborgs universitet (622)
Uppsala universitet (318)
Chalmers tekniska högskola (152)
Kungliga Tekniska Högskolan (144)
Linköpings universitet (89)
Lunds universitet (79)
visa fler...
Umeå universitet (75)
Karolinska Institutet (75)
RISE (57)
Sveriges Lantbruksuniversitet (47)
Malmö universitet (37)
Linnéuniversitetet (24)
Luleå tekniska universitet (19)
Stockholms universitet (19)
Örebro universitet (14)
Jönköping University (13)
Mittuniversitetet (12)
Högskolan i Halmstad (7)
Karlstads universitet (5)
Högskolan i Skövde (3)
Högskolan Väst (2)
Gymnastik- och idrottshögskolan (1)
Blekinge Tekniska Högskola (1)
visa färre...
Språk
Engelska (1367)
Svenska (3)
Finska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (1370)
Teknik (289)
Naturvetenskap (175)
Lantbruksvetenskap (12)
Samhällsvetenskap (3)
Humaniora (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy