SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0003 004X OR L773:1945 3027 "

Sökning: L773:0003 004X OR L773:1945 3027

  • Resultat 1-25 av 77
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Stefan S., et al. (författare)
  • Mineralogy, paragenesis, and mineral chemistry of REEs in the Olserum-Djupedal REE-phosphate mineralization, SE Sweden
  • 2018
  • Ingår i: American Mineralogist. - : MINERALOGICAL SOC AMER. - 0003-004X .- 1945-3027. ; 103:1, s. 125-142
  • Tidskriftsartikel (refereegranskat)abstract
    • The rapidly growing use of rare earth elements and yttrium (REE) in modern-day technologies, not least within the fields of green and carbon-free energy applications, requires exploitation of new REE deposits and deposit types. In this perspective, it is vital to develop a fundamental understanding of the behavior of REE in natural hydrothermal systems and the formation of hydrothermal REE deposits. In this study, we establish a mineralogical, textural, and mineral-chemical framework for a new type of deposit, the hydrothermal Olserum-Djupedal REE-phosphate mineralization in SE Sweden. An early, high-temperature REE stage is characterized by abundant monazite-(Ce) and xenotime-(Y) coexisting with fluorapatite and subordinate amounts of (Y,REE,U,Fe)-(Nb,Ta) oxides. During a subsequent stage, allanite-(Ce) and ferriallanite-(Ce) formed locally, partly resulting from the breakdown of primary monazite-(Ce). Alteration of allanite-(Ce) or ferriallanite-(Ce) to bastnasite-(Ce) and minor synchysite-(Ce) at lower temperatures represents the latest stage of REE mineral formation. The paragenetic sequence and mineral chemistry of the allanites record an increase in Ca content in the fluid. We suggest that this local increase in Ca, in conjunction with changes in oxidation state, were the key factors controlling the stability of monazite-(Ce) in the assemblages of the Olserum-Djupedal deposit. We interpret the alteration and replacement of primary monazite-(Ce), xenotime-(Y), fluorapatite, and minor (Y,REE,U,Fe)-(Nb, Ta) oxide phase(s), to be the consequence of coupled dissolution-reprecipitation processes. These processes mobilized REE,Th,U, and Nb-Ta, which caused the formation of secondary monazite-(Ce), xenotime-(Y), fluorapatite, and minor amounts of allanite-(Ce) and ferriallanite-(Ce). In addition, these alteration processes produced uraninite, thorite, columbite-(Fe), and uncharacterized (Th,U,Y,Ca)-silicates. Textural relations show that the dissolution-reprecipitation processes affecting fluorapatite preceded those affecting monazite-(Ce), xenotime-(Y), and the (Y, REE, U, Fe)-(Nb, Ta) oxide phase(s). The mineralogy of the primary ore mineralization and the subsequently formed alteration assemblages demonstrate the combined mobility of REE and HFSE in a natural F-bearing high-temperature hydrothermal system. The observed coprecipitation of monazite-(Ce), xenotime-(Y), and fluorapatite during the primary REE mineralization stage highlights the need for further research on the potentially important role of the phosphate ligand in hydrothermal REE transporting systems.
  •  
2.
  • Ardit, Matteo, et al. (författare)
  • Vanadium-induced coloration in grossite (CaAl4O7) and hibonite (CaAl12O19)
  • 2021
  • Ingår i: American Mineralogist. - : Mineralogical Society of America. - 0003-004X .- 1945-3027. ; 106:4, s. 599-608
  • Tidskriftsartikel (refereegranskat)abstract
    • High concentrations of vanadium cause very unusual coloration in hibonite (purple) and grossite (light violet) crystals in an exotic mineral assemblage from Sierra de Comechingones (Argentina). In the hibonite (CaAl12O19) structure vanadium ions, in various valence states (divalent, trivalent, and tetravalent), may be distributed over five crystallographic sites with coordinations corresponding to different polyhedra, namely, three unequal octahedra [M1 (D3d), M4 (C3ν), and M5 (Cs)], one M3 tetrahedron (C3ν), and one unusual fivefold-coordinated trigonal bipyramid M2 (D3h). Possible locations of vanadium ions in grossite (CaAl4O7) are limited to two crystallographically distinct sites (T1 and T2, both C1) in tetrahedral coordination.The combination of single-crystal X-ray diffraction and absorption spectroscopy techniques aided by chemical analyses has yielded details on the nature of the vanadium-induced color in both hibonite and grossite crystals. In hibonite, both M4 face-sharing octahedral and M2 trigonal bipyramid sites of the R-block are partially occupied by V3+. Strongly polarized bands recorded at relatively low energies in optical absorption spectra indicate that V2+ is located at the M4 octahedral site of the hibonite R-block. Chemical analyses coupled with an accurate determination of the electron densities at structural sites in hibonite suggest that the vanadium ions occupy about 10 and 5% of the M4 and M2 sites, respectively. For grossite, polarized optical absorption spectra reveal no indications of V2+; all observed absorption bands can be assigned to V3+ in tetrahedral coordination. Although not evident by the observed electron densities at the T sites of grossite (due to the low-V content), longer bond distances, and a higher degree of polyhedral distortion suggest that V3+ is located at the T2 site.
  •  
3.
  • Balic-Zunic, Tonci, et al. (författare)
  • Full analysis of feldspar texture and crystal structure by combining X-ray and electron techniques
  • 2013
  • Ingår i: American Mineralogist. - : Mineralogical Society of America. - 0003-004X .- 1945-3027. ; 98:1, s. 41-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Feldspar crystals typically show a range of exsolution and polysynthetic twinning textures that can present problems for their full characterization, but at the same time give important information about their genesis. We present an integrated procedure for the micro-texture analysis, twin law identification plus crystal structure refinement of all components in a feldspar intergrowth. This procedure was applied to perthitic intergrowths in feldspars from two different pegmatites in the Larvik plutonic complex in the southern part of the Oslo region, Norway. It revealed that the two starting high-temperature (HT) feldspars had similar global chemical compositions but underwent significantly different cooling histories, with cooling times probably differing by over an order of magnitude. Powder X-ray diffraction with Rietveld refinement was used for a preliminary identification of the mineral components and concluding quantitative phase analysis. Electron microprobe analysis was used to bracket the chemical compositions of the constituents. Electron backscatter diffraction was used to reveal the texture of the samples, twin laws and spatial distribution and crystallographic orientation of the crystal domains. Single-grain X-ray diffraction recorded by an area detector was applied for a simultaneous integration of reflection intensities for all crystallographic domains with different orientations and severe diffraction overlaps. The crystal structures were refined using the program JANA2006 that allows a simultaneous calculation for structurally different components. Combined results of various methods helped improve accuracy and resolve ambiguities that arise from the application of a single technique. The approach is widely applicable to the study of mineral intergrowths and bridges an existing gap in the routinely accessible data on the structural characteristics of rock constituents.
  •  
4.
  • Benazzouz, Brahim K., et al. (författare)
  • Determination of the melting temperature of kaolinite by means of the Z-method
  • 2013
  • Ingår i: American Mineralogist. - : Mineralogical Society of America. - 0003-004X .- 1945-3027. ; 98:10, s. 1881-1885
  • Tidskriftsartikel (refereegranskat)abstract
    • The melting temperature of materials is an important thermodynamic property. Despite the importance of kaolinite, one of the most common clay minerals on the Earth's surface, its thermal and melting behavior is poorly understood. We apply here the Z-method to determine the melting temperature (T-m) and the limit of superheating (T-LS) of kaolinite. The T-m is found at 1818 K (8.85 GPa), and T-LS at 1971 K (6.8 GPa). The diffusion coefficient for all atoms has been calculated in a broad temperature range. The calculated characteristics and, in particular, their dependence on temperature have confirmed the solid-liquid transition and strongly support the calculated melting point. In addition, some computed quantities, such as the radial distribution function, coordination numbers and mean-square displacement, were used to confirm the liquid state of kaolinite from the melting temperature as well as at other temperatures in the liquid branch. The diffusion coefficient for different atoms has been calculated throughout the isochore. These quantities and in particular their evolution under temperature have confirmed the solid-liquid states of kaolinite and the presence of the melting point. The latter quantity constitutes the first ever melting simulation of a clay mineral with close agreement to the experimental one.
  •  
5.
  • Biagion, Cristian, et al. (författare)
  • The crystal structure of turneaureite, Ca5(AsO4)3Cl, the arsenate analog of chlorapatite and its relationships with the arsenate apatites johnbaumite and svabite
  • 2017
  • Ingår i: American Mineralogist. - : Mineralogical Society of America. - 0003-004X .- 1945-3027. ; 102, s. 1981-1986
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structure of turneaureite, ideally Ca5(AsO4)3Cl, was studied using a specimen from the Brattfors mine, Nordmark, Värmland, Sweden, by means of single-crystal X-ray diffraction data. The structure was refinedto R1 = 0.017 on the basis of 716 unique reflectios with Fo > 4σ(Fo) in the P63/m space group, with unit-cell parameters a = 9.9218(3), c = 6.8638(2) Å, V = 585.16(4) Å3. The chemical composition of the sample, determined by electron-microprobe analysis, is (in wt%; average of 10 spot analyses): SO3 0.22, P2O5 0.20, V2O5 0.01, As2O5 51.76, SiO2 0.06, CaO 41.39, MnO 1.89, SrO 0.12, BaO 0.52, PbO 0.10, Na2O 0.02, F 0.32, Cl 2.56, H2Ocalc 0.58, O(≡F+Cl) –0.71, total 99.04. On the basis of 13 anions per formula unit, the empirical formula corresponds to (Ca4.82Mn0.17Ba0.02Sr0.01)∑5.02 (As2.94P0.02S0.02Si0.01)∑2.99O12[Cl0.47(OH)0.42F0.11]∑1.00.Turneaureite is topologically similar to the other members of the apatite supergroup: columns of face-sharing M1 polyhedra running along c are connected through TO4 tetrahedra with channels hosting M2 cations and X anions. Owing to its particular chemical composition, the studied turneaureite can be considered as a ternary calcium arsenate apatite; consequently it has several partially filledanion sites within the anion columns. Polarized single-crystal FTIR spectra of the studied sample indicate stronger hydrogen bonding and less diverse short-range atom arrangements around (OH) groups in turneaureite as compared to the related minerals johnbaumite and svabite. An accurate knowledge of the atomic arrangement of this apatite-remediation mineral represents an improvement in our understanding of minerals able to sequester and stabilize heavy metals such as arsenic in polluted areas.
  •  
6.
  •  
7.
  • Biagioni, Cristian, et al. (författare)
  • The crystal structure of svabite, Ca5(AsO4)3F, an arsenate member of the apatite supergroup
  • 2016
  • Ingår i: American Mineralogist. - : Mineralogical Society of America. - 0003-004X .- 1945-3027. ; 101, s. 1750-1755
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structure of svabite, ideally Ca5(AsO4)3F, was studied using a specimen from the Jakobsberg mine, Värmland, Sweden, by means of single-crystal X‑ray diffraction data. The structure was refined to R1 = 0.032 on the basis of 928 unique reflections with Fo > 4s(Fo) in the P63/m space group, with unit-cell parameters a = 9.7268(5), c = 6.9820(4) Å, V = 572.07(5) Å3. The chemical composition of the sample, determined by electron-microprobe analysis, is (in wt%, average of 10 spot analyses): SO3 0.49, P2O5 0.21, V2O5 0.04, As2O5 51.21, SiO2 0.19, CaO 39.31, MnO 0.48, SrO 0.03, PbO 5.19, Na2O 0.13, F 2.12, Cl 0.08, H2Ocalc 0.33, O (≡ F+Cl) –0.91, total 98.90. On the basis of 13 anions per formula unit, the empirical formula corresponds to (Ca4.66Pb0.16Mn0.04Na0.03)Σ4.89(As2.96S0.04Si0.02P0.02)Σ3.04O12[F0.74(OH)0.24Cl0.01]. Svabite is topologically similar to the other members of the apatite supergroup: columns of face-sharing M1 polyhedra running along c are connected through TO4 tetrahedra with channels hosting M2 cations and X anions. The crystal structure of synthetic Ca5(AsO4)3F was previously reported as triclinic. On the contrary, the present refinement of the crystal structure of svabite shows no deviations from the hexagonal symmetry. An accurate knowledge of the atomic arrangement of this apatite-remediation mineral represents an improvement in our understanding of minerals able to sequester and stabilize heavy metals such as arsenic in polluted areas.
  •  
8.
  • Bonazzi, Paola, et al. (författare)
  • Multi-analytical approach to solve the puzzle of an allanite-subgroup mineral from Kesebol, Vastra Gotaland, Sweden
  • 2009
  • Ingår i: American Mineralogist. - : Mineralogical Society of America. - 0003-004X .- 1945-3027. ; 94:1, s. 121-134
  • Tidskriftsartikel (refereegranskat)abstract
    • Dark-brownish. euhedral crystals of an "allanite-like" mineral occur in a hematite-impregnated Mn-silicate rock at Kesebol, Vastra Gotaland, Sweden, associated with gasparite-(Ce), chernovite-(Y), rhodonite, andradite, manganoan calcite, and quartz. A structural study was carried out on single crystals-untreated, heated in air, and heated under inert atmosphere-combined with Mossbauer spectroscopy and TEM investigation. In all the untreated crystals the mean < M3-O > distance indicates that Me2+(Me = Mn, Fe) prevails at this site (< M3-O > in the range 2.169-2.180 angstrom), in contrast with chemical data obtained by EPMA that yield a simplified formula Ca(REE2/33+square(1/3))Me-3(3+)(SiO4)(Si2O7) O(OH), when normalized to Si = 3.00 apfu. Moreover, when a crystal is heated in air, all geometrical and structural variations indicate the development of an oxidation-dehydrogenation reaction, thus confirming that M3 is occupied by divalent cations before heating. The corresponding dehydrogenation is confirmed by a dramatic lengthening of the donor-acceptor distance. A crystal was annealed under inert atmosphere to verify possible effects of radiation damage on the polyhedral volumes. After prolonged annealing at 700 C, a slight decrease of the unit-cell parameters is observed, suggesting restoring of crystallinity from a "partially metamict" state. Nonetheless, even in the annealed crystal, the < M3-O > distance is still consistent with a dominance of divalent cations at the M3 site. For all the examined crystals, structural data point to an octahedral cation population as follows: M1 = (Me3+, Al); M2 = (Al, Me3+). M3 = (Me2+, Me3+). This assumption is also in agreement with the Mossbauer spectrum, which was fitted to two Lorentzian quadrupole doublets for Fe3+ and one for Fe2+. Values of the isomer shifts (0.36 and 0.37 mm/s for Fe3+; 1.11 mm/s for Fe2+) and the quadrupole splitting (1.96 and 1.02 for Fe3+; 1.90 for Fe2+) show that Fe2+ (similar to 12% of the total iron) is located in M3, while Fe3+ occupies M I and, to lesser extent, M2. TEM-EDS investigations have revealed chemical heterogeneities related to different degree of radiation damage. In particular, areas showing poor crystallinity are relatively enriched in Si and O with respect to the highly crystalline areas, thus suggesting that EPMA chemical data are biased by the presence of metamict areas enriched in SiO2 and likely in H2O. EPMA data were therefore corrected for the excess of silica. The cation population after correction is in keeping with the structural and spectroscopic data. Disregarding minor substitutions, the ideal chemical formula for the epidote-group mineral from Kesebol is CaREEFe3+AlMn2+(Si2O7)(SiO4)O(OH), which is related to ferriallanite-(Ce) by the substitutional vector (M3)(Mn2+) -> M3 (Fe2+).
  •  
9.
  •  
10.
  • Bosi, Ferdinando, et al. (författare)
  • Crystal chemistry of spinels in the system MgAl2O4-MgV2O4-Mg2VO4
  • 2016
  • Ingår i: American Mineralogist. - : Mineralogical Society of America. - 0003-004X .- 1945-3027. ; 101, s. 580-586
  • Tidskriftsartikel (refereegranskat)abstract
    • Eight spinel single-crystal samples belonging to the spinel sensu stricto-magnesiocoulsonite series (MgAl2O4-MgV2O4) were synthesized and crystal-chemically characterized by X‑ray diffraction, electron microprobe and optical absorption spectroscopy. Site populations show that the tetrahedrally coordinated site (T) is populated by Mg and minor Al for the spinel sensu stricto compositions, and only by Mg for the magnesiocoulsonite compositions, while the octahedrally coordinated site (M) is populated by Al, V3+, minor Mg, and very minor amounts of V4+. The latter occurs in appreciable amounts in the Al-free magnesium vanadate spinel, T(Mg)M(Mg0.26V3+1.48V4+0.26)O4, showing the presence of the inverse spinel VMg2O4. The studied samples are characterized by substitution of Al3+ for V3+ and (Mg2++V4+) for 2V3+ described in the system MgAl2O4-MgV2O4-VMg2O4.The present data in conjunction with data from the literature provide a basis for quantitative analyses of two solid-solution series MgAl2O4-MgV23+O4 and MgV23+O4-V4+Mg2O4. Unit-cell parameter increases with increasing V3+ along the series MgAl2O4-MgV2O4 (8.085–8.432 Å), but only slightly increases with increasing V3+ along the series VMg2O4-MgV2O4 (8.386–8.432 Å). Although a solid solution could be expected between the MgAl2O4 and VMg2O4 end-members, no evidence was found. Amounts of V4+ are nearly insignificant in all synthetic Al-bearing vanadate spinels, but are appreciable in Al-free vanadate spinel.An interesting observation of the present study is that despite the observed complete solid-solution along the MgAl2O4-MgV2O4 and MgV2O4-VMg2O4 series, the spinel structure seems to be unable to stabilize V4+ in any intermediate members on the MgAl2O4-Mg2VO4 join even at high oxygen fugacities. This behavior indicates that the accommodation of specific V-valences can be strongly influenced by crystal-structural constraints, and any evaluation of oxygen fugacities during mineral formation based exclusively on V cation valence distributions in spinel should be treated with caution. The present study underlines that the V valency distribution in spinels is not exclusively reflecting oxygen fugacities, but also depends on activities and solubilities of all chemical components in the crystallization environment.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  •  
20.
  •  
21.
  •  
22.
  • Breton, Hélène, et al. (författare)
  • Static compression of Fe4N to 77 GPa and its implications for nitrogen storage in the deep Earth
  • 2019
  • Ingår i: American Mineralogist. - : Mineralogical Society of America. - 0003-004X .- 1945-3027. ; 104:12, s. 1781-1787
  • Tidskriftsartikel (refereegranskat)abstract
    • Compression and decompression experiments on face-centered cubic (fcc) γ′-Fe4N to 77 GPa at room temperature were conducted in a diamond-anvil cell with in situ X-ray diffraction (XRD) to examine its stability under high pressure. In the investigated pressure range, γ′-Fe4N did not show any structural transitions. However, a peak broadening was observed in the XRD patterns above 60 GPa. The obtained pressure-volume data to 60 GPa were fitted to the third-order Birch-Murnaghan equation of state (EoS), which yielded the following elastic parameters: K0 = 169 (6) GPa, K′ = 4.1 (4), with a fixed V0 = 54.95 Å at 1 bar. A quantitative Schreinemakers' web was obtained at 15–60 GPa and 300–1600 K by combining the EoS for γ′-Fe4N with reported phase stability data at low pressures. The web indicates the existence of an invariant point at 41 GPa and 1000 K where γ′-Fe4N, hexagonal closed-packed (hcp) ε-Fe7N3, double hexagonal closed-packed β-Fe7N3, and hcp Fe phases are stable. From the invariant point, a reaction γ′-Fe4N = β-Fe7N3 + hcp Fe originates toward the high-pressure side, which determines the high-pressure stability of γ′-Fe4N at 56 GPa and 300 K. Therefore, the γ′-Fe4N phase observed in the experiments beyond this pressure must be metastable. The obtained results support the existing idea that β-Fe7N3 would be the most nitrogen-rich iron compound under core conditions. An iron carbonitride Fe7(C,N)3 found as a mantle-derived diamond inclusion implies that β-Fe7N3 and Fe7C3 may form a continuous solid solution in the mantle deeper than 1000 km depth. Diamond formation may be related to the presence of fluids in the mantle, and dehydration reactions of high-pressure hydrous phase D might have supplied free fluids in the mantle at depths greater than 1000 km. As such, the existence of Fe7(C,N)3 in diamond can be an indicator of water transportation to the deep mantle.
  •  
23.
  •  
24.
  •  
25.
  • Fernández-Remolar, David, et al. (författare)
  • A mineralogical archive of the biogeochemical sulfur cycle preserved in the subsurface of the Río Tinto system
  • 2018
  • Ingår i: American Mineralogist. - : Walter de Gruyter. - 0003-004X .- 1945-3027. ; 103:3, s. 394-411
  • Tidskriftsartikel (refereegranskat)abstract
    • The search for extinct and extant life on Mars is based on the study of biosignatures that could be preserved under Mars-like, extreme conditions that are replicated in different terrestrial analog environments. The mineral record in the subsurface of the Río Tinto system is one example of a Mars analog site that has been exposed to weathering conditions, including the biogeochemical activity of Fe and S chemolithotrophic bacteria, for millions of years. The SEM-EDAX analysis of different samples recovered in the Peña de Hierro area from four boreholes, ranging from 166 to 610 m in depth, has provided the identification of microbial structures that have affected a suite of hydrothermal minerals (~345 Ma) as well as minerals likely produced by biological activity in more recent times (<7 Ma). The hydrothermal minerals correspond to reduced sulfur or sulfate-bearing compounds (e.g., pyrite and barite) that are covered by bacilli- or filamentous-like microbial structures and/or secondary ferrous carbonates (e.g., siderite) with laminar to spherical structures. The secondary iron carbonates can be in direct contact or above an empty interphase with the primary hydrothermal minerals following a wavy to bent contact. Such an empty interphase is usually filled with nanoscale, straight filamentous structures that have a carbonaceous composition. The occurrence of a sulfur and iron chemolithotrophic community in the Río Tinto basement strongly suggests that the association between sulfur-bearing minerals, dissolution scars and secondary minerals of biological origin is a complex process involving the microbial attack on mineral surfaces by sulfur reducing bacteria followed by the precipitation of iron-rich carbonates. In this scenario, iron sulfide compounds such as pyrite would act as electron donors under microbial oxidation, while sulfate minerals such as barite would act as electron acceptors through sulfate reduction. Furthermore, the formation of siderite would have resulted from carbonate biomineralization of iron chemoheterotrophic organims or other microorganisms that concentrate carbonate through metabolic pathways. Although the distribution of the mineral biosignatures at depth clearly follows a redox gradient, they show some irregular allocation underground, suggesting that the geochemical conditions governing the microbial activity are affected by local changes associated with the fracturing pattern of the Río Tinto basement. The abundance of sulfur- and iron-bearing minerals in the Mars crust suggests that the Río Tinto mineral biosignatures can be useful in the search for extant and extinct subsurface life on the red planet
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-25 av 77
Typ av publikation
tidskriftsartikel (77)
Typ av innehåll
refereegranskat (71)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Hålenius, Ulf (32)
Bosi, Ferdinando (28)
Skogby, Henrik (18)
Andreozzi, Giovanni ... (5)
Skogby, Henrik, 1956 ... (4)
Kristiansson, Per (3)
visa fler...
Saxena, SK (3)
Belonoshko, AB (2)
Le Bihan, T. (2)
Piazolo, Sandra (2)
Majka, Jaroslaw (2)
Zack, Thomas, 1968 (2)
Jonsson, Erik, 1967- (2)
Andreozzi, Giovanni (2)
Whitehouse, Martin J ... (1)
Evans, James (1)
Annersten, H. (1)
Bostrom, D. (1)
Huang, L. (1)
Persson, Per (1)
Johansson, Börje (1)
Carlson, Stefan (1)
Boily, Jean-Francois (1)
Ahuja, Rajeev (1)
Sjodin, A. (1)
Navrotsky, Alexandra (1)
Meinhold, Guido (1)
Högdahl, Karin (1)
Rekhi, S. (1)
Aiglsperger, Thomas (1)
Proenza, Joaquín A. (1)
Zaccarini, Frederica (1)
Garuti, Giorgio (1)
Johansson, Leif (1)
Hermansson, Kersti (1)
Pitcairn, Iain K. (1)
Edén, Mattias (1)
McIntyre, Garry J. (1)
Billström, Kjell (1)
Nysten, Per (1)
Tellgren, R (1)
Häussermann, Ulrich (1)
Högdahl, Karin, 1962 ... (1)
Wagner, Thomas (1)
Andersson, Stefan S. (1)
Michallik, Radoslaw ... (1)
Rimsa, Andrius (1)
Holtstam, D (1)
Broman, C. (1)
Balic-Zunic, Tonci (1)
visa färre...
Lärosäte
Naturhistoriska riksmuseet (40)
Uppsala universitet (17)
Stockholms universitet (6)
Lunds universitet (5)
Kungliga Tekniska Högskolan (3)
Göteborgs universitet (2)
visa fler...
Umeå universitet (2)
Luleå tekniska universitet (2)
visa färre...
Språk
Engelska (77)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (65)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy