SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "FÖRF:(Inger Andersson) srt2:(2020-2023)"

Search: FÖRF:(Inger Andersson) > (2020-2023)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chaudhari, Aditya S., et al. (author)
  • Genetically encoded non-canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side-chains in EL222
  • 2023
  • In: Protein Science. - : John Wiley & Sons. - 0961-8368 .- 1469-896X. ; 32:4
  • Journal article (peer-reviewed)abstract
    • Photoreceptors containing the light-oxygen-voltage (LOV) domain elicit biological responses upon excitation of their flavin mononucleotide (FMN) chromophore by blue light. The mechanism and kinetics of dark-state recovery are not well understood. Here we incorporated the non-canonical amino acid p-cyanophenylalanine (CNF) by genetic code expansion technology at 45 positions of the bacterial transcription factor EL222. Screening of light-induced changes in infrared (IR) absorption frequency, electric field and hydration of the nitrile groups identified residues CNF31 and CNF35 as reporters of monomer/oligomer and caged/decaged equilibria, respectively. Time-resolved multi-probe UV/visible and IR spectroscopy experiments of the lit-to-dark transition revealed four dynamical events. Predominantly, rearrangements around the A'α helix interface (CNF31 and CNF35) precede FMN-cysteinyl adduct scission, folding of α-helices (amide bands), and relaxation of residue CNF151. This study illustrates the importance of characterizing all parts of a protein and suggests a key role for the N-terminal A'α extension of the LOV domain in controlling EL222 photocycle length.
  •  
2.
  • Zhou, Yu, et al. (author)
  • Grafting Rhodobacter sphaeroides with red algae Rubisco to accelerate catalysis and plant growth
  • 2023
  • In: NATURE PLANTS. - : Springer Nature. - 2055-0278. ; 9, s. 978-986
  • Journal article (peer-reviewed)abstract
    • Improving the carboxylation properties of Rubisco has primarily arisen from unforeseen amino acid substitutions remote from the catalytic site. The unpredictability has frustrated rational design efforts to enhance plant Rubisco towards the prized growth-enhancing carboxylation properties of red algae Griffithsia monilis GmRubisco. To address this, we determined the crystal structure of GmRubisco to 1.7 angstrom. Three structurally divergent domains were identified relative to the red-type bacterial Rhodobacter sphaeroides RsRubisco that, unlike GmRubisco, are expressed in Escherichia coli and plants. Kinetic comparison of 11 RsRubisco chimaeras revealed that incorporating C329A and A332V substitutions from GmRubisco Loop 6 (corresponding to plant residues 328 and 331) into RsRubisco increased the carboxylation rate (kcatc) by 60%, the carboxylation efficiency in air by 22% and the CO2/O-2 specificity (Sc/o) by 7%. Plastome transformation of this RsRubisco Loop 6 mutant into tobacco enhanced photosynthesis and growth up to twofold over tobacco producing wild-type RsRubisco. Our findings demonstrate the utility of RsRubisco for the identification and in planta testing of amino acid grafts from algal Rubisco that can enhance the enzyme's carboxylase potential.
  •  
3.
  • Munke, Anna (author)
  • Small Particles with Big Impact : Structural Studies of Viruses and Toxicological Studies of Nanodiamonds
  • 2020
  • Doctoral thesis (other academic/artistic)abstract
    • Nanoparticles (NPs) can be found everywhere and their existence has both beneficial and harmful consequences for the environment and living beings. The investigations on which this thesis is based upon have contributed to an increased understanding of some of these particles and to the development of a method that could be used to study their structure.Three different NPs have been studied by different means. In the first study, I describe how single-particle cryo-electron microscopy was used to determine the atomic structure of an algal virus; Chaetoceros tenuissimus RNA virus type II. This virus is taxonomically classified in the order Picornavirales, which includes viruses that infect a wide range of organisms, including humans, plants and insects. By comparing the algal virus structure to structures of related viruses in the order, we could identify a number of traits that were likely acquired or lost among these viruses during the course of evolution. In the second study, rice dwarf virus was utilised as a test sample to develop a new structural biology method, single-particle coherent diffractive imaging (CDI). The method aims to study macromolecules in a single-particle fashion at room temperature with the help of an X-ray free-electron laser, thus enabling studies of fast dynamics without the need to crystallize or freeze the sample. The study was the first of several within a large international collaboration and the first single-particle CDI experiment reported using femtosecond hard X-ray pulses. Despite several advances by the team, many challenges remain for the method to reach its full potential. In the third study, I describe in vitro and in vivo toxicological studies of detonation nanodiamonds (DNDs). I could demonstrate that some DNDs are toxic and that the toxicity is dependent both on the core and surface of the particles. DNDs are suggested for numerous different biomedical applications that alternately utilise their toxic properties or require biocompatibility. The results presented show that these contrasting properties can be exhibited by similar DNDs and that thorough characterisation and close control of the manufacturing process is essential for biomedical applications.This thesis explores how studies of some of nature’s nanoparticles - viruses - can lead to biological insight, how virus NPs can play a role in developing new technologies that may enable an even deeper understanding and explores issues that need to be considered for NPs to reach their potential in biomedical applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view