SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0737 4038 OR L773:1537 1719 srt2:(2015-2019)"

Sökning: L773:0737 4038 OR L773:1537 1719 > (2015-2019)

  • Resultat 1-10 av 66
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ali, Raja Hashim, et al. (författare)
  • Identifying Clusters of High Confidence Homologies in Multiple Sequence Alignments
  • 2019
  • Ingår i: Molecular biology and evolution. - : OXFORD UNIV PRESS. - 0737-4038 .- 1537-1719. ; 36:10, s. 2340-2351
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple sequence alignment (MSA) is ubiquitous in evolution and bioinformatics. MSAs are usually taken to be a known and fixed quantity on which to perform downstream analysis despite extensive evidence that MSA accuracy and uncertainty affect results. These errors are known to cause a wide range of problems for downstream evolutionary inference, ranging from false inference of positive selection to long branch attraction artifacts. The most popular approach to dealing with this problem is to remove (filter) specific columns in the MSA that are thought to be prone to error. Although popular, this approach has had mixed success and several studies have even suggested that filtering might be detrimental to phylogenetic studies. We present a graph-based clustering method to address MSA uncertainty and error in the software Divvier (available at https://github.com/simonwhelan/Divvier), which uses a probabilistic model to identify clusters of characters that have strong statistical evidence of shared homology. These clusters can then be used to either filter characters from the MSA (partial filtering) or represent each of the clusters in a new column (divvying). We validate Divvier through its performance on real and simulated benchmarks, finding Divvier substantially outperforms existing filtering software by retaining more true pairwise homologies calls and removing more false positive pairwise homologies. We also find that Divvier, in contrast to other filtering tools, can alleviate long branch attraction artifacts induced by MSA and reduces the variation in tree estimates caused by MSA uncertainty.
  •  
2.
  • Andrade, S. C. S., et al. (författare)
  • Articulating "Archiannelids": Phylogenomics and Annelid Relationships, with Emphasis on Meiofaunal Taxa
  • 2015
  • Ingår i: Molecular Biology and Evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 32:11, s. 2860-2875
  • Tidskriftsartikel (refereegranskat)abstract
    • Annelid disparity has resulted in morphological-based classifications that disagree with phylogenies based on Sanger sequencing and phylogenomic analyses. However, the data used for the latter studies came from various sources and technologies, involved poorly occupied matrices and lacked key lineages. Here, we generated a new Illumina-based data set to address annelid relationships from a fresh perspective, independent from previously generated data and with nearly fully occupied matrices. Our sampling reflects the span of annelid diversity, including two symbiotic annelid groups (Myzostomida and Spinther) and five meiofaunal groups once referred to as part of Archiannelida (three from Protodrilida, plus Dinophilus and Polygordius). As well as the placement of these unusual annelids, we sought to address the overall phylogeny of Annelida, and provide a new perspective for naming of major clades. Our results largely corroborate the phylogenomic results of Weigert et al. (2014; Illuminating the base of the annelid tree using transcriptomics. Mol Biol Evol. 31: 1391-1401), with "Magelona + Owenia" and Chaetopteridae forming a grade with respect to all other annelids. Echiura and Sipuncula are supported as being annelid groups, with Sipuncula closest to amphinomids as sister group to Sedentaria and Errantia. We recovered the three Protodrilida terminals as sister clade to Phyllodocida and Eunicida (=clade Aciculata). We therefore place Protodrilida as part of Errantia. Polygordius was found to be sister group to the scaleworm terminal and the possibility that it is a simplified scaleworm clade, as has been shown for the former family Pisionidae, is discussed. Our results were equivocal with respect to Dinophilus, Myzostomida, and Spinther possibly owing to confounding long-branch effects.
  •  
3.
  • Bechsgaard, Jesper, et al. (författare)
  • Evidence for Faster X Chromosome Evolution in Spiders
  • 2019
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 36:6, s. 1281-1293
  • Tidskriftsartikel (refereegranskat)abstract
    • In species with chromosomal sex determination, X chromosomes are predicted to evolve faster than autosomes because of positive selection on recessive alleles or weak purifying selection. We investigated X chromosome evolution in Stegodyphus spiders that differ in mating system, sex ratio, and population dynamics. We assigned scaffolds to X chromosomes and autosomes using a novel method based on flow cytometry of sperm cells and reduced representation sequencing. We estimated coding substitution patterns (dN/dS) in a subsocial outcrossing species (S. africanus) and its social inbreeding and female-biased sister species (S. mimosarum), and found evidence for faster-X evolution in both species. X chromosome-to-autosome diversity (piX/piA) ratios were estimated in multiple populations. The average piX/piA estimates of S. africanus (0.57 [95% CI: 0.55–0.60]) was lower than the neutral expectation of 0.75, consistent with more hitchhiking events on X-linked loci and/or a lower X chromosome mutation rate, and we provide evidence in support of both. The social species S. mimosarum has a significantly higher piX/piA ratio (0.72 [95% CI: 0.65–0.79]) in agreement with its female-biased sex ratio. Stegodyphus mimosarum also have different piX/piA estimates among populations, which we interpret as evidence for recurrent founder events. Simulations show that recurrent founder events are expected to decrease the piX/piA estimates in S. mimosarum, thus underestimating the true effect of female-biased sex ratios. Finally, we found lower synonymous divergence on X chromosomes in both species, and the male-to-female substitution ratio to be higher than 1, indicating a higher mutation rate in males.
  •  
4.
  • Beichman, Annabel C, et al. (författare)
  • Aquatic Adaptation and Depleted Diversity : A Deep Dive into the Genomes of the Sea Otter and Giant Otter.
  • 2019
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 36:12, s. 2631-2655
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite its recent invasion into the marine realm, the sea otter (Enhydra lutris) has evolved a suite of adaptations for life in cold coastal waters, including limb modifications and dense insulating fur. This uniquely dense coat led to the near-extinction of sea otters during the 18th-20th century fur trade and an extreme population bottleneck. We used the de novo genome of the southern sea otter (E. l. nereis) to reconstruct its evolutionary history, identify genes influencing aquatic adaptation, and detect signals of population bottlenecks. We compared the genome of the southern sea otter with the tropical freshwater-living giant otter (Pteronura brasiliensis) to assess common and divergent genomic trends between otter species, and with the closely related northern sea otter (E. l. kenyoni) to uncover population-level trends. We found signals of positive selection in genes related to aquatic adaptations, particularly limb development and polygenic selection on genes related to hair follicle development. We found extensive pseudogenization of olfactory receptor genes in both the sea otter and giant otter lineages, consistent with patterns of sensory gene loss in other aquatic mammals. At the population level, the southern sea otter and the northern sea otter showed extremely low genomic diversity, signals of recent inbreeding, and demographic histories marked by population declines. These declines may predate the fur trade and appear to have resulted in an increase in putatively deleterious variants that could impact the future recovery of the sea otter.
  •  
5.
  • Bolivar, Paulina, et al. (författare)
  • Biased Inference of Selection Due to GC-Biased Gene Conversion and the Rate of Protein Evolution in Flycatchers When Accounting for It
  • 2018
  • Ingår i: Molecular biology and evolution. - : OXFORD UNIV PRESS. - 0737-4038 .- 1537-1719. ; 35:10, s. 2475-2486
  • Tidskriftsartikel (refereegranskat)abstract
    • The rate of recombination impacts on rates of protein evolution for at least two reasons: it affects the efficacy of selection due to linkage and influences sequence evolution through the process of GC-biased gene conversion (gBGC). We studied how recombination, via gBGC, affects inferences of selection in gene sequences using comparative genomic and population genomic data from the collared flycatcher (Ficedula albicollis). We separately analyzed different mutation categories ("strong"-to-"weak" "weak-to-strong," and GC-conservative changes) and found that gBGC impacts on the distribution of fitness effects of new mutations, and leads to that the rate of adaptive evolution and the proportion of adaptive mutations among nonsynonymous substitutions are underestimated by 22-33%. It also biases inferences of demographic history based on the site frequency spectrum. In light of this impact, we suggest that inferences of selection (and demography) in lineages with pronounced gBGC should be based on GC-conservative changes only. Doing so, we estimate that 10% of nonsynonymous mutations are effectively neutral and that 27% of nonsynonymous substitutions have been fixed by positive selection in the flycatcher lineage. We also find that gene expression level, sex-bias in expression, and the number of protein-protein interactions, but not Hill-Robertson interference (HRI), are strong determinants of selective constraint and rate of adaptation of collared flycatcher genes. This study therefore illustrates the importance of disentangling the effects of different evolutionary forces and genetic factors in interpretation of sequence data, and from that infer the role of natural selection in DNA sequence evolution.
  •  
6.
  • Bolívar, Paulina, et al. (författare)
  • Recombination Rate Variation Modulates Gene Sequence Evolution Mainly via GC-Biased Gene Conversion, Not Hill-Robertson Interference, in an Avian System
  • 2016
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 33:1, s. 216-227
  • Tidskriftsartikel (refereegranskat)abstract
    • The ratio of nonsynonymous to synonymous substitution rates (ω) is often used to measure the strength of natural selection. However, ω may be influenced by linkage among different targets of selection, that is, Hill-Robertson interference (HRI), which reduces the efficacy of selection. Recombination modulates the extent of HRI but may also affect ω by means of GC-biased gene conversion (gBGC), a process leading to a preferential fixation of G:C ("strong," S) over A:T ("weak," W) alleles. As HRI and gBGC can have opposing effects on ω, it is essential to understand their relative impact to make proper inferences of ω. We used a model that separately estimated S-to-S, S-to-W, W-to-S, and W-to-W substitution rates in 8,423 avian genes in the Ficedula flycatcher lineage. We found that the W-to-S substitution rate was positively, and the S-to-W rate negatively, correlated with recombination rate, in accordance with gBGC but not predicted by HRI. The W-to-S rate further showed the strongest impact on both dN and dS. However, since the effects were stronger at 4-fold than at 0-fold degenerated sites, likely because the GC content of these sites is farther away from its equilibrium, ω slightly decreases with increasing recombination rate, which could falsely be interpreted as a consequence of HRI. We corroborated this hypothesis analytically and demonstrate that under particular conditions, ω can decrease with increasing recombination rate. Analyses of the site-frequency spectrum showed that W-to-S mutations were skewed toward high, and S-to-W mutations toward low, frequencies, consistent with a prevalent gBGC-driven fixation bias.
  •  
7.
  • Brace, Selina, et al. (författare)
  • Evolutionary History of the Nesophontidae, the Last Unplaced Recent Mammal Family
  • 2016
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 33:12, s. 3095-3103
  • Tidskriftsartikel (refereegranskat)abstract
    • The mammalian evolutionary tree has lost several major clades through recent human-caused extinctions. This process of historical biodiversity loss has particularly affected tropical island regions such as the Caribbean, an area of great evolutionary diversification but poor molecular preservation. The most enigmatic of the recently extinct endemic Caribbean mammals are the Nesophontidae, a family of morphologically plesiomorphic lipotyphlan insectivores with no consensus on their evolutionary affinities, and which constitute the only major recent mammal clade to lack any molecular information on their phylogenetic placement. Here, we use a palaeogenomic approach to place Nesophontidae within the phylogeny of recent Lipotyphla. We recovered the near-complete mitochondrial genome and sequences for 17 nuclear genes from a similar to 750-year-old Hispaniolan Nesophontes specimen, and identify a divergence from their closest living relatives, the Solenodontidae, more than 40 million years ago. Nesophontidae is thus an older distinct lineage than many extant mammalian orders, highlighting not only the role of island systems as "museums" of diversity that preserve ancient lineages, but also the major human-caused loss of evolutionary history.
  •  
8.
  • Brandis, Gerrit, 1985-, et al. (författare)
  • Operon Concatenation Is an Ancient Feature That Restricts the Potential to Rearrange Bacterial Chromosomes
  • 2019
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 36:9, s. 1990-2000
  • Tidskriftsartikel (refereegranskat)abstract
    • The last common ancestor of the Gammaproteobacteria carried an important 40-kb chromosome section encoding 51 proteins of the transcriptional and translational machinery. These genes were organized into eight contiguous operons (rrnB-tufB-secE-rpoBC-str-S10-spc-alpha). Over 2 Gy of evolution, in different lineages, some of the operons became separated by multigene insertions. Surprisingly, in many Enterobacteriaceae, much of the ancient organization is conserved, indicating a strong selective force on the operons to remain colinear. Here, we show for one operon pair, tufB-secE in Salmonella, that an interruption of contiguity significantly reduces growth rate. Our data show that the tufB-secE operons are concatenated by an interoperon terminator-promoter overlap that plays a significant role regulating gene expression. Interrupting operon contiguity interferes with this regulation, reducing cellular fitness. Six operons of the ancestral chromosome section remain contiguous in Salmonella (tufB-secE-rpoBC and S10-spc-alpha) and, strikingly, each of these operon pairs is also connected by an interoperon terminator-promoter overlap. Accordingly, we propose that operon concatenation is an ancient feature that restricts the potential to rearrange bacterial chromosomes and can select for the maintenance of a colinear operon organization over billions of years.
  •  
9.
  • Chapman, Joanne R., et al. (författare)
  • The Evolution of Innate Immune Genes : Purifying and Balancing Selection on beta-Defensins in Waterfowl
  • 2016
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 33:12, s. 3075-3087
  • Tidskriftsartikel (refereegranskat)abstract
    • In disease dynamics, high immune gene diversity can confer a selective advantage to hosts in the face of a rapidly evolving and diverse pathogen fauna. This is supported empirically for genes involved in pathogen recognition and signalling. In contrast, effector genes involved in pathogen clearance may be more constrained. beta-Defensins are innate immune effector genes; their main mode of action is via disruption of microbial membranes. Here, five beta-defensin genes were characterized in mallards (Anas platyrhynchos) and other waterfowl; key reservoir species for many zoonotic diseases. All five genes showed remarkably low diversity at the individual-, population-, and species-level. Furthermore, there was widespread sharing of identical alleles across species divides. Thus, specific beta-defensin alleles were maintained not only spatially but also over long temporal scales, with many amino acid residues being fixed across all species investigated. Purifying selection to maintain individual, highly efficacious alleles was the primary evolutionary driver of these genes in waterfowl. However, we also found evidence for balancing selection acting on the most recently duplicated beta-defensin gene (AvBD3b). For this gene, we found that amino acid replacements were more likely to be radical changes, suggesting that duplication of beta-defensin genes allows exploration of wider functional space. Structural conservation to maintain function appears to be crucial for avian beta-defensin effector molecules, resulting in low tolerance for new allelic variants. This contrasts with other types of innate immune genes, such as receptor and signalling molecules, where balancing selection to maintain allelic diversity has been shown to be a strong evolutionary force.
  •  
10.
  • Chen, Jun, et al. (författare)
  • Genetic Diversity and the Efficacy of Purifying Selection across Plant and Animal Species
  • 2017
  • Ingår i: Molecular biology and evolution. - : OXFORD UNIV PRESS. - 0737-4038 .- 1537-1719. ; 34:6, s. 1417-1428
  • Tidskriftsartikel (refereegranskat)abstract
    • A central question in evolutionary biology is why some species have more genetic diversity than others and a no less important question is why selection efficacy varies among species. Although these questions have started to be tackled in animals, they have not been addressed to the same extent in plants. Here, we estimated nucleotide diversity at synonymous, pi(S), and nonsynonymous sites, pi(N), and a measure of the efficacy of selection, the ratio pi(N)/pi(S), in 34 animal and 28 plant species using full genome data. We then evaluated the relationship of nucleotide diversity and selection efficacy with effective population size, the distribution of fitness effect and life history traits. In animals, our data confirm that longevity and propagule size are the variables that best explain the variation in pi(S) among species. In plants longevity also plays a major role as well as mating system. As predicted by the nearly neutral theory of molecular evolution, the log of pi(N)/pi(S) decreased linearly with the log of pi(S) but the slope was weaker in plants than in animals. This appears to be due to a higher mutation rate in long lived plants, and the difference disappears when pi(S) is rescaled by the mutation rate. Differences in the distribution of fitness effect of new mutations also contributed to variation in pi(N)/pi(S) among species.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 66
Typ av publikation
tidskriftsartikel (65)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (66)
Författare/redaktör
Andersson, Dan I. (4)
Ellegren, Hans (4)
Hansson, Bengt (2)
Näsvall, Joakim (2)
Hughes, Diarmaid, 19 ... (2)
Burki, Fabien (2)
visa fler...
Warringer, Jonas, 19 ... (2)
Carlborg, Örjan (2)
Ågren, Jon (2)
Holmes, A. (1)
Gallus, S (1)
Kumar, V (1)
Smadja, C. M. (1)
Wolf, Jochen B. W. (1)
Broberg Palmgren, Ka ... (1)
Lei, Fumin (1)
Ingvarsson, Pär K (1)
Löfstedt, Christer (1)
Morrell, Jane (1)
Brunström, Björn (1)
Bergquist, Jonas (1)
Lindblad-Toh, Kersti ... (1)
Blomberg, Anders, 19 ... (1)
Sonnhammer, Erik (1)
Wallberg, Andreas (1)
Van Aken, Olivier (1)
Lagergren, Jens (1)
Crowley, JJ (1)
Hampl, Vladimir (1)
Karnkowska, Anna (1)
Kolisko, Martin (1)
Li, Jing (1)
Pleijel, Fredrik, 19 ... (1)
Rouse, G. W. (1)
Stairs, Courtney W (1)
Solano, E. (1)
Haitina, Tatjana, Do ... (1)
Guo, Xiaoxian (1)
Gu, Zhenglong (1)
Piskur, Jure (1)
Slotte, Tanja (1)
Vahter, Marie (1)
Siegel, Paul B (1)
Amunts, Alexey (1)
Baldauf, Sandra (1)
Menzel, Mandy (1)
Street, Nathaniel, 1 ... (1)
Street, Nathaniel R. (1)
de Marothy, Minttu (1)
Larsson, Erik, 1975 (1)
visa färre...
Lärosäte
Uppsala universitet (38)
Lunds universitet (10)
Göteborgs universitet (6)
Sveriges Lantbruksuniversitet (6)
Umeå universitet (5)
Stockholms universitet (5)
visa fler...
Karolinska Institutet (3)
Kungliga Tekniska Högskolan (2)
Naturhistoriska riksmuseet (2)
Linköpings universitet (1)
Mittuniversitetet (1)
Chalmers tekniska högskola (1)
Linnéuniversitetet (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (66)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (62)
Medicin och hälsovetenskap (4)
Lantbruksvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy