SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0737 4038 OR L773:1537 1719 srt2:(2020-2024)"

Sökning: L773:0737 4038 OR L773:1537 1719 > (2020-2024)

  • Resultat 1-10 av 103
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aase-Remedios, Madeleine E., et al. (författare)
  • Evolution of the Spider Homeobox Gene Repertoire by Tandem and Whole Genome Duplication
  • 2023
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 40:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Gene duplication generates new genetic material that can contribute to the evolution of gene regulatory networks and phenotypes. Duplicated genes can undergo subfunctionalization to partition ancestral functions and/or neofunctionalization to assume a new function. We previously found there had been a whole genome duplication (WGD) in an ancestor of arachnopulmonates, the lineage including spiders and scorpions but excluding other arachnids like mites, ticks, and harvestmen. This WGD was evidenced by many duplicated homeobox genes, including two Hox clusters, in spiders. However, it was unclear which homeobox paralogues originated by WGD versus smaller-scale events such as tandem duplications. Understanding this is a key to determining the contribution of the WGD to arachnopulmonate genome evolution. Here we characterized the distribution of duplicated homeobox genes across eight chromosome-level spider genomes. We found that most duplicated homeobox genes in spiders are consistent with an origin by WGD. We also found two copies of conserved homeobox gene clusters, including the Hox, NK, HRO, Irx, and SINE clusters, in all eight species. Consistently, we observed one copy of each cluster was degenerated in terms of gene content and organization while the other remained more intact. Focussing on the NK cluster, we found evidence for regulatory subfunctionalization between the duplicated NK genes in the spider Parasteatoda tepidariorum compared to their single-copy orthologues in the harvestman Phalangium opilio. Our study provides new insights into the relative contributions of multiple modes of duplication to the homeobox gene repertoire during the evolution of spiders and the function of NK genes.
  •  
2.
  • Abdalaal, Hind, et al. (författare)
  • Collateral toxicity limits the evolution of bacterial Release Factor 2 towards total omnipotence
  • 2020
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 37:10, s. 2918-2930
  • Tidskriftsartikel (refereegranskat)abstract
    • When new genes evolve through modification of existing genes, there are often trade-offs between the new and original functions, making gene duplication and amplification necessary to buffer deleterious effects on the original function. We have used experimental evolution of a bacterial strain lacking peptide release factor 1 (RF1) in order to study how peptide release factor 2 (RF2) evolves to compensate the loss of RF1. As expected, amplification of the RF2-encoding gene prfB to high copy number was a rapid initial response, followed by the appearance of mutations in RF2 and other components of the translation machinery. Characterization of the evolved RF2 variants by their effects on bacterial growth rate, reporter gene expression, and in vitro translation termination reveals a complex picture of reduced discrimination between the cognate and near cognate stop codons and highlight a functional trade-off that we term “collateral toxicity”. We suggest that this type of trade-off may be a more serious obstacle in new gene evolution than the more commonly discussed evolutionary trade-offs between “old” and “new” functions of a gene, as it cannot be overcome by gene copy number changes. Further, we suggest a model for how RF2 autoregulation responds not only to alterations in the demand for RF2 activity, but also for RF1 activity.
  •  
3.
  • Adler, M, et al. (författare)
  • Controls for Phylogeny and Robust Analysis in Pareto Task Inference
  • 2022
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 1537-1719 .- 0737-4038. ; 39:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the tradeoffs faced by organisms is a major goal of evolutionary biology. One of the main approaches for identifying these tradeoffs is Pareto task inference (ParTI). Two recent papers claim that results obtained in ParTI studies are spurious due to phylogenetic dependence (Mikami T, Iwasaki W. 2021. The flipping t-ratio test: phylogenetically informed assessment of the Pareto theory for phenotypic evolution. Methods Ecol Evol. 12(4):696–706) or hypothetical p-hacking and population-structure concerns (Sun M, Zhang J. 2021. Rampant false detection of adaptive phenotypic optimization by ParTI-based Pareto front inference. Mol Biol Evol. 38(4):1653–1664). Here, we show that these claims are baseless. We present a new method to control for phylogenetic dependence, called SibSwap, and show that published ParTI inference is robust to phylogenetic dependence. We show how researchers avoided p-hacking by testing for the robustness of preprocessing choices. We also provide new methods to control for population structure and detail the experimental tests of ParTI in systems ranging from ammonites to cancer gene expression. The methods presented here may help to improve future ParTI studies.
  •  
4.
  • Ament-Velásquez, Sandra Lorena, Ph.D. 1988-, et al. (författare)
  • The Dynamics of Adaptation to Stress from Standing Genetic Variation and de novo Mutations
  • 2022
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 39:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Adaptation from standing genetic variation is an important process underlying evolution in natural populations, but we rarely get the opportunity to observe the dynamics of fitness and genomic changes in real time. Here, we used experimental evolution and Pool-Seq to track the phenotypic and genomic changes of genetically diverse asexual populations of the yeast Saccharomyces cerevisiae in four environments with different fitness costs. We found that populations rapidly and in parallel increased in fitness in stressful environments. In contrast, allele frequencies showed a range of trajectories, with some populations fixing all their ancestral variation in <30 generations and others maintaining diversity across hundreds of generations. We detected parallelism at the genomic level (involving genes, pathways, and aneuploidies) within and between environments, with idiosyncratic changes recurring in the environments with higher stress. In particular, we observed a tendency of becoming haploid-like in one environment, whereas the populations of another environment showed low overall parallelism driven by standing genetic variation despite high selective pressure. This work highlights the interplay between standing genetic variation and the influx of de novo mutations in populations adapting to a range of selective pressures with different underlying trait architectures, advancing our understanding of the constraints and drivers of adaptation.
  •  
5.
  • Armisen, David, et al. (författare)
  • Transcriptome-based phylogeny of the semi-aquatic bugs (Hemiptera Heteroptera: Gerromorpha) reveals patterns of lineage expansion in a series of new adaptive zones
  • 2022
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 39:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Key innovations enable access to new adaptive zones and are often linked to increased species diversification. As such, innovations have attracted much attention, yet their concrete consequences on the subsequent evolutionary trajectory and diversification of the bearing lineages remain unclear. Water striders and relatives (Hemiptera: Heteroptera: Gerromorpha) represent a monophyletic lineage of insects that transitioned to live on the water-air interface and that diversified to occupy ponds, puddles, streams, mangroves and even oceans. This lineage offers an excellent model to study the patterns and processes underlying species diversification following the conquest of new adaptive zones. However, such studies require a reliable and comprehensive phylogeny of the infraorder. Based on whole transcriptomic datasets of 97 species and fossil records, we reconstructed a new phylogeny of the Gerromorpha that resolved inconsistencies and uncovered strong support for previously unknown relationships between some important taxa. We then used this phylogeny to reconstruct the ancestral state of a set of adaptations associated with water surface invasion (fluid locomotion, dispersal and transition to saline waters) and sexual dimorphism. Our results uncovered important patterns and dynamics of phenotypic evolution, revealing how the initial event of water surface invasion enabled multiple subsequent transitions to new adaptive zones on the water surfaces. This phylogeny and the associated transcriptomic datasets constitute highly valuable resources, making Gerromorpha an attractive model lineage to study phenotypic evolution.
  •  
6.
  • Aswad, Amr, et al. (författare)
  • Evolutionary history of endogenous Human Herpesvirus 6 reflects human migration out of Africa
  • 2021
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 38:1, s. 96-107
  • Tidskriftsartikel (refereegranskat)abstract
    • Human herpesvirus 6A and 6B (HHV-6) can integrate into the germline, and as a result about 70 million people harbour the genome of one of these viruses in every cell of their body. Until now, it has been largely unknown if i) these integrations are ancient, ii) if they still occur, and iii) whether circulating virus strains differ from integrated ones. Here we used next generation sequencing and mining of public human genome datasets to generate the largest and most diverse collection of circulating and integrated HHV-6 genomes studied to date. In genomes of geographically dispersed, only distantly-related people, we identified clades of integrated viruses that originated from a single ancestral event, confirming this with fluorescent in situ hybridization to directly observe the integration locus. In contrast to HHV-6B, circulating and integrated HHV-6A sequences form distinct clades, arguing against ongoing integration of circulating HHV-6A or "reactivation" of integrated HHV-6A. Taken together, our study provides the first comprehensive picture of the evolution of HHV-6, and reveals that integration of heritable HHV-6 has occurred since the time of, if not before, human migrations out of Africa.
  •  
7.
  • Bartke, Katrin, et al. (författare)
  • Genetic Architecture and Fitness of Bacterial Interspecies Hybrids
  • 2021
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 38:4, s. 1472-1481
  • Tidskriftsartikel (refereegranskat)abstract
    • Integration of a conjugative plasmid into a bacterial chromosome can promote the transfer of chromosomal DNA to other bacteria. Intraspecies chromosomal conjugation is believed responsible for creating the global pathogens Klebsiella pneumoniae ST258 and Escherichia coli ST1193. Interspecies conjugation is also possible but little is known about the genetic architecture or fitness of such hybrids. To study this, we generated by conjugation 14 hybrids of E. coli and Salmonella enterica. These species belong to different genera, diverged from a common ancestor >100 Ma, and share a conserved order of orthologous genes with similar to 15% nucleotide divergence. Genomic analysis revealed that all but one hybrid had acquired a contiguous segment of donor E. coli DNA, replacing a homologous region of recipient Salmonella chromosome, and ranging in size from similar to 100 to >4,000 kb. Recombination joints occurred in sequences with higher-than-average nucleotide identity. Most hybrid strains suffered a large reduction in growth rate, but the magnitude of this cost did not correlate with the length of foreign DNA. Compensatory evolution to ameliorate the cost of low-fitness hybrids pointed towards disruption of complex genetic networks as a cause. Most interestingly, 4 of the 14 hybrids, in which from 45% to 90% of the Salmonella chromosome was replaced with E. coli DNA, showed no significant reduction in growth fitness. These data suggest that the barriers to creating high-fitness interspecies hybrids may be significantly lower than generally appreciated with implications for the creation of novel species.
  •  
8.
  • Ben-David, Moshe, et al. (författare)
  • Enzyme Evolution An Epistatic Ratchet versus a Smooth Reversible Transition
  • 2020
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 37:4, s. 1133-1147
  • Tidskriftsartikel (refereegranskat)abstract
    • Evolutionary trajectories are deemed largely irreversible. In a newly diverged protein, reversion of mutations that led to the functional switch typically results in loss of both the new and the ancestral functions. Nonetheless, evolutionary transitions where reversions are viable have also been described. The structural and mechanistic causes of reversion compatibility versus incompatibility therefore remain unclear. We examined two laboratory evolution trajectories of mammalian paraoxonase-1, a lactonase with promiscuous organophosphate hydrolase (OPH) activity. Both trajectories began with the same active-site mutant, His115Trp, which lost the native lactonase activity and acquired higher OPH activity. A neo-functionalization trajectory amplified the promiscuous OPH activity, whereas the re-functionalization trajectory restored the native activity, thus generating a new lactonase that lacks His115. The His115 revertants of these trajectories indicated opposite trends. Revertants of the neo-functionalization trajectory lost both the evolved OPH and the original lactonase activity. Revertants of the trajectory that restored the original lactonase function were, however, fully active. Crystal structures and molecular simulations show that in the newly diverged OPH, the reverted His115 and other catalytic residues are displaced, thus causing loss of both the original and the new activity. In contrast, in the re-functionalization trajectory, reversion compatibility of the original lactonase activity derives from mechanistic versatility whereby multiple residues can fulfill the same task. This versatility enables unique sequence-reversible compositions that are inaccessible when the active site was repurposed toward a new function.
  •  
9.
  • Bourras, Salim (författare)
  • Domestication of High-Copy Transposons Underlays the Wheat Small RNA Response to an Obligate Pathogen
  • 2020
  • Ingår i: Molecular Biology and Evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 37, s. 839-848
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant genomes have evolved several evolutionary mechanisms to tolerate and make use of transposable elements (TEs). Of these, transposon domestication into cis-regulatory and microRNA (miRNA) sequences is proposed to contribute to abiotic/biotic stress adaptation in plants. The wheat genome is derived at 85% from TEs, and contains thousands of miniature inverted-repeat transposable elements (MITEs), whose sequences are particularly prone for domestication into miRNA precursors. In this study, we investigate the contribution of TEs to the wheat small RNA immune response to the lineage-specific, obligate powdery mildew pathogen. We show that MITEs of the Mariner superfamily contribute the largest diversity of miRNAs to the wheat immune response. In particular, MITE precursors of miRNAs are wide-spread over the wheat genome, and highly conserved copies are found in the Lr34 and QPm.tut-4A mildew resistance loci. Our work suggests that transposon domestication is an important evolutionary force driving miRNA functional innovation in wheat immunity.
  •  
10.
  • Brealey, Jaelle C., et al. (författare)
  • Dental Calculus as a Tool to Study the Evolution of the Mammalian Oral Microbiome
  • 2020
  • Ingår i: Molecular biology and evolution. - : OXFORD UNIV PRESS. - 0737-4038 .- 1537-1719. ; 37:10, s. 3003-3022
  • Tidskriftsartikel (refereegranskat)abstract
    • Dental calculus, the calcified form of the mammalian oral microbial plaque biofilm, is a rich source of oral microbiome, host, and dietary biomolecules and is well preserved in museum and archaeological specimens. Despite its wide presence in mammals, to date, dental calculus has primarily been used to study primate microbiome evolution. We establish dental calculus as a valuable tool for the study of nonhuman host microbiome evolution, by using shotgun metagenomics to characterize the taxonomic and functional composition of the oral microbiome in species as diverse as gorillas, bears, and reindeer. We detect oral pathogens in individuals with evidence of oral disease, assemble near-complete bacterial genomes from historical specimens, characterize antibiotic resistance genes, reconstruct components of the host diet, and recover host genetic profiles. Our work demonstrates that metagenomic analyses of dental calculus can be performed on a diverse range of mammalian species, which will allow the study of oral microbiome and pathogen evolution from a comparative perspective. As dental calculus is readily preserved through time, it can also facilitate the quantification of the impact of anthropogenic changes on wildlife and the environment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 103
Typ av publikation
tidskriftsartikel (102)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (103)
Författare/redaktör
aut (6)
Andersson, Leif (4)
Guschanski, Katerina ... (4)
Suh, Alexander (4)
Hughes, Diarmaid, 19 ... (3)
Lindblad-Toh, Kersti ... (3)
visa fler...
Kutschera, Verena E. (3)
Scofield, Douglas, 1 ... (3)
Schlebusch, Carina, ... (3)
Dalen, Love (3)
Westbury, Michael V. (3)
Huseby, Douglas L (3)
Brandis, Gerrit, 198 ... (3)
Wolf, Jochen B. W. (2)
Sanyal, Suparna (2)
Mijakovic, Ivan, 197 ... (2)
Ingvarsson, Pär K (2)
Adler, M (2)
Andersson, Dan I. (2)
Pippel, Martin (2)
Martin, DP (2)
Slotte, Tanja (2)
Brealey, Jaelle C. (2)
Murrell, B (2)
Street, Nathaniel, 1 ... (2)
Ray, David A. (2)
Hirt, Robert P. (2)
Enbody, Erik D (2)
Vogan, Aaron A. (2)
Ament-Velásquez, San ... (2)
Bendixsen, Devin P. (2)
Stelkens, Rike, 1978 ... (2)
Bunikis, Ignas (2)
Bruford, Michael W. (2)
Jakobsson, Mattias (2)
Karlsson, Elinor K. (2)
Garcia, Carlos J. (2)
Hiller, Michael (2)
Prost, Stefan (2)
van der Valk, Tom (2)
Jemth, Per (2)
Loeschcke, Volker (2)
Ritchie, Michael G. (2)
Hofreiter, Michael (2)
Marques-Bonet, Tomas (2)
Garoff, Linnéa (2)
Kapun, Martin (2)
Flatt, Thomas (2)
Russo, Isa-Rita M. (2)
Ryder, Oliver A. (2)
visa färre...
Lärosäte
Uppsala universitet (56)
Stockholms universitet (18)
Lunds universitet (11)
Karolinska Institutet (11)
Sveriges Lantbruksuniversitet (9)
Umeå universitet (6)
visa fler...
Naturhistoriska riksmuseet (5)
Göteborgs universitet (3)
Kungliga Tekniska Högskolan (2)
Högskolan i Skövde (2)
Chalmers tekniska högskola (2)
Linnéuniversitetet (1)
RISE (1)
visa färre...
Språk
Engelska (103)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (90)
Medicin och hälsovetenskap (8)
Lantbruksvetenskap (3)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy