SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0969 9961 srt2:(2005-2009)"

Sökning: L773:0969 9961 > (2005-2009)

  • Resultat 1-10 av 50
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ajmone-Cat, Maria Antonietta, et al. (författare)
  • Prostaglandin E(2) and BDNF levels in rat hippocampus are negatively correlated with status epilepticus severity: No impact on survival of seizure-generated neurons.
  • 2006
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 23:1, s. 23-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Partial and generalized status epilepticus (pSE and gSE) trigger the same level of progenitor cell proliferation in adult dentate gyrus, but survival of new neurons is poor after gSE. Here, we show markedly elevated levels of prostaglandin E-2 (PGE(2)) and brain-derived neurotrophic factor (BDNF) in rat hippocampal formation at 7 days following pSE but not gSE. Administration of the cyclooxygenase (COX) inhibitor flurbiprofen for 1 week, starting at day 8 post-SE, abated PGE(2) and decreased BDNF levels, but did not affect survival of new neurons a weeks later. Thus, high PGE(2) and BDNF levels induced by pSE are probably not of major importance for survival of new neurons during the first days after formation. We propose that they modulate other aspects of synaptic and cellular plasticity, and thereby may influence epileptogenesis.
  •  
2.
  •  
3.
  • Carlsson, Thomas, et al. (författare)
  • Graft placement and uneven pattern of reinnervation in the striatum is important for development of graft-induced dyskinesia.
  • 2006
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 21:3, s. 657-668
  • Tidskriftsartikel (refereegranskat)abstract
    • In two recent double-blind clinical trials of fetal ventral mesencephalic cell transplants into the striatum in patients with Parkinson's disease (PD), a significant proportion of the grafted patients developed dyskinetic side effects, which were not seen in the sham operated patients. Comparison between dyskinetic and non-dyskinetic grafted patients in one of the trials suggested that an uneven pattern of striatal reinnervation might be the leading cause of the dyskinesias. Here, we studied the importance of graft placement for the development of dyskinesias in parkinsonian rats. Abnormal involuntary movements resembling peak-dose dyskinesias seen in PD patients were induced by daily injections of L-DOPA for 6 weeks. The dyskinetic animals received about 130.000 fetal ventral mesencephalic cells as single grafts placement in the rostral or the caudal aspect of the head of striatum. The results show that grafts placed in the caudal, but not the rostral, part are effective in reducing the L-DOPA-induced limb and orolingual dyskinesia, predominantly seen as hyperkinesia. The same grafts, however, also induced a new type of dyskinetic behavior after activation with amphetamine, which were not seen in non-grafted lesion controls. The severity of these abnormal involuntary movements was significantly correlated with a higher graft-derived dopaminergic reinnervation in the caudal aspect of the head of striatum relative to the rostral part. The results indicate that graft-induced dyskinesias in PD patients may be linked to single, small graft deposits that provide an uneven, patchy reinnervation of the putamen.
  •  
4.
  •  
5.
  • Darreh-Shori, T., et al. (författare)
  • Differential CSF butyrylcholinesterase levels in Alzheimer's disease patients with the ApoE ε4 allele in relation to cognitive function and cerebral glucose metabolism.
  • 2006
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 24:2, s. 326-333
  • Tidskriftsartikel (refereegranskat)abstract
    • Butyrylcholinesterase (BuChE) is increased in the cerebral cortex of Alzheimer's disease (AD) patients, particularly those carrying ε4 allele of the apolipoprotein E gene (ApoE) and certain BuChE variants that predict increased AD risk and poor response to anticholinesterase therapy. We measured BuChE activity and protein level in CSF of eighty mild AD patients in relation to age, gender, ApoE ε4 genotype, cognition and cerebral glucose metabolism (CMRglc). BuChE activity was 23% higher in men than women ( p<0.03) and 40–60% higher in ApoE ε4 negative patients than in those carrying one or two ε4 alleles ( p<0.0004). CSF BuChE level correlated with cortical CMRglc. Patients with high to moderate CSF BuChE showed better cognitive function scores than others. We hypothesize that CSF BuChE varies inversely with BuChE in cortical amyloid plaques. Thus, low BuChE in a patient's CSF may predict extensive incorporation in neuritic plaques, increased neurotoxicity and greater central neurodegeneration.
  •  
6.
  • Doverhag, Christina, 1979, et al. (författare)
  • Pharmacological and genetic inhibition of NADPH oxidase does not reduce brain damage in different models of perinatal brain injury in newborn mice
  • 2008
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 1095-953X .- 0969-9961. ; 31:1, s. 133-44
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Inflammation and reactive oxygen species (ROS) are important in the development of perinatal brain injury. The ROS-generating enzyme NADPH oxidase (Nox2) is present in inflammatory cells and contributes to brain injury in adult animal models. HYPOTHESIS: NADPH oxidase contributes to ROS formation and development of injury in the immature brain and inhibition of NADPH oxidase attenuates perinatal brain injury. METHODS: We used animal models of term hypoxia-ischemia (HI) (P9 mice) as well as ibotenate-induced excitotoxic injury (P5 mice) mimicking features of periventricular leukomalacia in preterm infants. In vitro microglia cell cultures were used to investigate NADPH oxidase-dependent ROS formation. In vivo we determined the impact 1) of HI on NADPH oxidase gene expression 2) of genetic (gp91-phox/Nox2 knock-out) and 3) of pharmacological NADPH oxidase inhibition on HI-induced injury and NMDA receptor-mediated excitotoxic injury, respectively. Endpoints were ROS formation, oxidative stress, apoptosis, inflammation and extent of injury. RESULTS: Hypoxia-ischemia increased NADPH oxidase subunits mRNA expression in total brain tissue in vivo. In vitro ibotenate increased NADPH oxidase-dependent formation of reactive oxygen species in microglia. In vivo the inhibition of NADPH oxidase did not reduce the extent of brain injury in any of the animal models. In contrast, the injury was increased by inhibition of NADPH oxidase and genetic inhibition was associated with an increased level of galectin-3 and IL-1beta. CONCLUSION: NADPH oxidase is upregulated after hypoxia-ischemia and activated microglia cells are a possible source of Nox2-derived ROS. In contrast to findings in adult brain, NADPH oxidase does not significantly contribute to the pathogenesis of perinatal brain injury. Results obtained in adult animals cannot be transferred to newborns and inhibition of NADPH oxidase should not be used in attempts to attenuate injury.
  •  
7.
  • Emilsson, Lina, et al. (författare)
  • Alzheimer’s disease: mRNA expression profiles of multiple patients show alterations of genes involved with calcium signalling
  • 2006
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 21:3, s. 618-625
  • Tidskriftsartikel (refereegranskat)abstract
    • We combined global and high-resolution strategies to find genes with altered mRNA expression levels in one of the largest collection of brain autopsies from Alzheimer's patients and controls ever studied. Our global analysis involved microarray hybridizations of large pools of samples obtained from 114 individuals, using two independent sets of microarrays. Ten genes selected from the microarray experiments were quantified on each individual separately using real-time RT-PCR. This high-resolution analysis accounted for systematic differences in age, postmortem interval, brain pH, and reference gene expression, and it estimated the effect of disease on mRNA levels, on top of the effect of all other variables. Differential expression was confirmed for eight out of ten genes. Among them, Type B inositol 1,4,5-trisphosphate 3-kinase (ITPKB), and regulator of G protein signaling 4 (RGS4) showed highly altered expression levels in patients (P values < 0.0001). Our results point towards increased inositol triphospate (IP3)-mediated calcium signaling in Alzheimer's disease.
  •  
8.
  • Frielingsdorf, Helena, et al. (författare)
  • Nerve growth factor promotes survival of new neurons in the adult hippocampus.
  • 2007
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 26:1, s. 47-55
  • Tidskriftsartikel (refereegranskat)abstract
    • xogenously provided NGF enhances cognitive performance in impaired rodents and humans and is currently a promising compound for the treatment of dementia. To investigate whether NGF-dependent cognitive improvement may be due in part to increased hippocampal neurogenesis, adult and aged male rats were treated with NGF or vehicle intracerebroventricularly for 6 or 20 days followed by evaluation of cholinergic parameters and hippocampal neurogenesis. We show that NGF increases hippocampal cholinergic activity as rapidly as 3 days after initiation of treatment. NGF treatment for 6 days did not affect proliferation of progenitor cells in the dentate gyrus granule cell layer (GCL). However, continuous NGF infusion enhanced survival of new neurons in the GCL of young adult, but not aged rats. Taken together, these findings suggest that NGF, likely mediated through increased cholinergic tone, promotes neurogenesis in the adult hippocampus, which may relate to the nootropic action of NGF.
  •  
9.
  • Gil, Joana, et al. (författare)
  • Reduced hippocampal neurogenesis in R6/2 transgenic Huntington's disease mice.
  • 2005
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961. ; 20:3, s. 744-751
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated whether cell proliferation and neurogenesis are altered in R6/2 transgenic Huntington's disease mice. Using bromodeoxyuridine (BrdU), we found a progressive decrease in the number of proliferating cells in the dentate gyrus of R6/2 mice. This reduction was detected in pre-symptomatic mice, and by 11.5 weeks, R6/2 mice had 66% fewer newly born cells in the hippocampus. The results were confirmed by immunohistochemistry for the cell cycle markers Ki-67 and proliferating cell nuclear antigen (PCNA). We did not observe changes in cell proliferation in the R6/2 subventricular zone, indicating that the decrease in cell proliferation is specific for the hippocampus. This decrease corresponded to a reduction in actual hippocampal neurogenesis as assessed by double immunostaining for BrdU and the neuronal marker neuronal nuclei (NeuN) and by immunohistochemistry for the neuroblast marker doublecortin. Reduced hippocampal neurogenesis may be a novel neuropathological feature in R6/2 mice that could be assessed when evaluating potential therapies.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 50

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy