SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Björkman Mats P. 1978) srt2:(2010-2014)"

Sökning: WFRF:(Björkman Mats P. 1978) > (2010-2014)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Spolaor, A., et al. (författare)
  • Seasonality of halogen deposition in polar snow and ice
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14, s. 9613-9622
  • Tidskriftsartikel (refereegranskat)abstract
    • The atmospheric chemistry of iodine and bromine in Polar regions is of interest due to the key role of halogens in many atmospheric processes, particularly tropospheric ozone destruction. Bromine is emitted from the open ocean but is enriched above first-year sea ice during springtime bromine explosion events, whereas iodine emission is at- tributed to biological communities in the open ocean and hosted by sea ice. It has been previously demonstrated that bromine and iodine are present in Antarctic ice over glacial– interglacial cycles. Here we investigate seasonal variability of bromine and iodine in polar snow and ice, to evaluate their emission, transport and deposition in Antarctica and the Arc- tic and better understand potential links to sea ice. We find that bromine and iodine concentrations and Br enrichment (relative to sea salt content) in polar ice do vary seasonally in Arctic snow and Antarctic ice. Although seasonal vari- ability in halogen emission sources is recorded by satellite- based observations of tropospheric halogen concentrations, seasonal patterns observed in snowpack are likely also in- fluenced by photolysis-driven processes. Peaks of bromine concentration and Br enrichment in Arctic snow and Antarc- tic ice occur in spring and summer, when sunlight is present. A secondary bromine peak, observed at the end of summer, is attributed to bromine deposition at the end of the polar day. Iodine concentrations are largest in winter Antarctic ice strata, contrary to contemporary observations of summer maxima in iodine emissions. These findings support previous observations of iodine peaks in winter snow strata attributed to the absence of sunlight-driven photolytic re-mobilisation of iodine from surface snow. Further investigation is required to confirm these proposed mechanisms explaining observa- tions of halogens in polar snow and ice, and to evaluate the extent to which halogens may be applied as sea ice proxies.
  •  
2.
  • Björkman, Mats P., 1978, et al. (författare)
  • Nitrate postdeposition processes in Svalbard surface snow
  • 2014
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 0148-0227 .- 2156-2202 .- 2169-897X .- 2169-8996. ; 119:22
  • Tidskriftsartikel (refereegranskat)abstract
    • The snowpack acts as a sink for atmospheric reactive nitrogen, but several postdeposition pathways have been reported to alter the concentration and isotopic composition of snow nitrate with implications for atmospheric boundary layer chemistry, ice core records, and terrestrial ecology following snow melt. Careful daily sampling of surface snow during winter (11-15 February 2010) and springtime (9 April to 5 May 2010) near Ny-Ålesund, Svalbard reveals a complex pattern of processes within the snowpack. Dry deposition was found to dominate over postdeposition losses, with a net nitrate deposition rate of (0.6+/-0.2) (my) molm 2 d 1 to homogeneous surface snow. At Ny-Ålesund, such surface dry deposition can either solely result from long-range atmospheric transport of oxidized nitrogen or include the redeposition of photolytic/bacterial emission originating from deeper snow layers. Our data further confirm that polar basin air masses bring 15 N-depleted nitrate to Svalbard, while high nitrate (delta) (18O) values only occur in connection with ozone-depleted air, and show that these signatures are reflected in the deposited nitrate. Such ozone-depleted air is attributed to active halogen chemistry in the air masses advected to the site. However, here the Ny-Ålesund surface snow was shown to have an active role in the halogen dynamics for this region, as indicated by declining bromide concentrations and increasing nitrate (delta) (18O), during high BrO (low-ozone) events. The data also indicate that the snowpack BrO-NO x cycling continued in postevent periods, when ambient ozone and BrO levels recovered.
  •  
3.
  • Björk, Robert G., 1974, et al. (författare)
  • Climate-related soil changes in tundra ecosystems at Latnjajaure, northern Sweden – an ITEX-IPY project
  • 2010
  • Ingår i: International Polar Year Oslo Science Conference.
  • Konferensbidrag (refereegranskat)abstract
    • During the 90'ies, the International Tundra Experiment (ITEX) was established as a leading project in arctic and alpine ecology, and has become a model for many later network establishments. The present study capitalizes on the early efforts of ITEX and aims at assessing ecosystem changes in the alpine areas of northern Sweden above timberline, i.e. the tundra, in relation to global change. By using the "old" ITEX plots established during the early years of the program we have measured ecosystem respiration (ER), the Normalized Difference Vegetation Index, and nitrogen (N) mineralization over the growing season. In addition, have soil samples been taken to quantify changes in the carbon (C) and N pool, including 13C and 15N. After 12 to 15 years of open top chamber (OTC) treatment no statistical effect was found on the soil temperature (10 cm soil depth), although the was an overall increase in all OTC by +0.2°C. However, the soil moisture decreased significantly by 3-14%, depending on plant community, in the OTCs compared to ambient conditions. Preliminary, there was a 20-37% non-significant higher mean ER in the OTC compared to the ambient plots over the growing season. Furthermore, the OTC treatment did not affect the growing season mineralization of inorganic N, or total C and N content of the soil. The stable isotope data showed both enrichment and depletion as a consequence of the OTC treatment, but no general pattern was discerned. Thus, this non-significant higher ER is most likely of plant origin than soil, as the plant standing biomass has increased in the OTCs. This study does not support the current consensus that tundra soils will alter their C and N dynamics in response to climate change.
  •  
4.
  • Björk, Robert G., 1974, et al. (författare)
  • Long-term warming effects on carbon and nitrogen dynamics in tundra soils
  • 2012
  • Ingår i: 20th Anniversary ITEX Workshop, El Paso, USA, 17–21 January 2012.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • During IPY 2008 we used the ITEX experiment in Latnjajaure (northern Sweden), established during the early years of the program, to investigate long-term warming effects on ecosystem respiration (ER), carbon (C) and nitrogen (N) pool (including d13C and d15N), soil organic C (SOC) chemical composition, and N mineralization among plant communities. After 12 to 15 years of open top chamber (OTC) treatment no statistical effect was found on the soil temperature (10 cm soil depth), although the was an overall increase in all OTC by +0.2°C. However, the soil moisture decreased significantly by 3-14%, depending on plant community, in the OTCs compared to ambient conditions. Preliminary, there was a 19-61% non-significant increase in annual growing season ER in the OTC compared to the ambient plots over the growing season. The were distinct differences in the SOM functional composition among plant communities with c 10% more O-alkyls stored in tussock tundra than in dry meadow. The OTCs did not consistently alter the SOM composition among the vegetation types but clearly showed a trend for reduced aliphatic and O-alkyl C in the OTCs suggesting increased decomposition (or reduced inputs) of these compounds. Thus, the non-significantly higher ER may in some communities be of plant origin linked to greater plant biomass in the OTCs, and in other (e.g. tussock tundra) from increased decomposition rates. In conclusion, this study showed that 12-15 years of OTC treatment had a modest effects impact C and N dynamics in tundra soils specific to distinct plant communities.
  •  
5.
  • Björkman, Mats P., 1978, et al. (författare)
  • A comparison of annual and seasonal carbon dioxide effluxes between sub-Arctic Sweden and High-Arctic Svalbard
  • 2010
  • Ingår i: Polar Research. - : Norwegian Polar Institute. - 1751-8369. ; 29:1, s. 75-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent climate change predictions suggest altered patterns of winter precipitation across the Arctic. It has been suggested that the presence, timing and amount of snow all affect microbial activity, thus influencing CO2 production in soil. In this study annual and seasonal emissions of CO2 were estimated in High-Arctic Adventdalen, Svalbard, and sub-Arctic Latnjajaure, Sweden, using a new trace gas-based method to track real time diffusion rates through the snow. Summer measurements from snow-free soils were made using a chamber-based method. Measurements were obtained at different snow regimes in order to evaluate the effect of snow depth on winter CO2 effluxes. Total annual emissions of CO2 from the sub-Arctic site (0.662–1.487 kg CO2 m-2 yr-1) were found to be more than double the emissions from the High-Arctic site (0.369–0.591 kg CO2 m-2 yr-1). There were no significant differences in winter effluxes between snow regimes or vegetation types, indicating that spatial variability in winter soil CO2 effluxes are not directly linked to snow cover thickness or soil temperatures. Total winter emissions (0.004–0.248 kg CO2 m-2) were found to be in the lower range of those previously described in the literature. Winter emissions varied in their contribution to total annual production between 1 and 18%. Artificial snow drifts shortened the snow-free period by two weeks and decreased annual CO2 emission by up to 20%. This study suggests that future shifts in vegetation zones may increase soil respiration from Arctic tundra regions.
  •  
6.
  • Björkman, Mats P., 1978, et al. (författare)
  • Winter carbon dioxide effluxes from Arctic ecosystems: An overview and comparison of methodologies
  • 2010
  • Ingår i: Global Biogeochemical Cycles. ; 24, s. GB3010-
  • Tidskriftsartikel (refereegranskat)abstract
    • The winter CO2 efflux from subnivean environments is an important component of annual C budgets in arctic ecosystems and consequently makes prediction and estimations of winter processes as well as incorporations of these processes into existing models important. Several methods have been used for estimating winter CO2 effluxes, involving different assumptions about the snow pack, all aiming to quantify CO2 production. Here, four different methods are compared and discussed: (1) measurements with a chamber on the snow surface, Fsnow; (2) chamber measurements directly on the soil, Fsoil, after snow removal; (3) diffusion measurements, F2-point, within the snow pack; and (4) a trace gas technique, FSF6, with multiple gas sampling within the snow pack. According to measurements collected from shallow and deep snow cover in High-Arctic Svalbard and Sub-Arctic Sweden during the winter of 2007-2008, the four methods differ by up to two orders of magnitude in their estimates of total winter emissions. The highest mean winter CO2 effluxes, 7.7-216.8 mg CO2 m-2 h-1, were observed using Fsoil and lowest values, 0.8-12.6 mg CO2 m-2 h-1, using FSF6. The Fsnow and F2-point methods were both within the lower range, 2.1-15.1 mg CO2 m-2 h-1 and 6.8-11.2 mg CO2 m-2 h-1, respectively. These differences are considered to be a result of contrasting methods, but also because the assumptions within the methods are not the same when quantifying CO2 production and effluxes to the atmosphere. Since snow can act as a barrier to CO2, Fsoil is assumed to measure soil production, whereas FSF6, Fsnow and F2-point are considered better approaches for quantifying exchange processes between the soil, snow, and the atmosphere. This study indicates that estimates of winter CO2 emissions may vary more as a result of the method used than due to the actual variation in soil CO2 production or release. This is a major concern, especially when CO2 efflux data are used in climate models or in carbon budget calculations, thus highlighting the need for further development and validation of accurate and appropriate techniques.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy