SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Blanc Guillermo A.) srt2:(2020-2023)"

Sökning: WFRF:(Blanc Guillermo A.) > (2020-2023)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • The Seventeenth Data Release of the Sloan Digital Sky Surveys : Complete Release of MaNGA, MaStar, and APOGEE-2 Data
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics (IOP). - 0067-0049 .- 1538-4365. ; 259:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys.
  •  
2.
  • Thilker, David A., et al. (författare)
  • PHANGS–JWST First Results : The Dust Filament Network of NGC 628 and Its Relation to Star Formation Activity
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • PHANGS–JWST mid-infrared (MIR) imaging of nearby spiral galaxies has revealed ubiquitous filaments of dust emission in intricate detail. We present a pilot study to systematically map the dust filament network (DFN) at multiple scales between 25 and 400 pc in NGC 628. MIRI images at 7.7, 10, 11.3, and 21 μm of NGC 628 are used to generate maps of the filaments in emission, while PHANGS–HST B-band imaging yields maps of dust attenuation features. We quantify the correspondence between filaments traced by MIR thermal continuum/polycyclic aromatic hydrocarbon (PAH) emission and filaments detected via extinction/scattering of visible light; the fraction of MIR flux contained in the DFN; and the fraction of H ii regions, young star clusters, and associations within the DFN. We examine the dependence of these quantities on the physical scale at which the DFN is extracted. With our highest-resolution DFN maps (25 pc filament width), we find that filaments in emission and attenuation are cospatial in 40% of sight lines, often exhibiting detailed morphological agreement; that ∼30% of the MIR flux is associated with the DFN; and that 75%–80% of the star formation in H ii regions and 60% of the mass in star clusters younger than 5 Myr are contained within the DFN. However, the DFN at this scale is anticorrelated with looser associations of stars younger than 5 Myr identified using PHANGS–HST near-UV imaging. We discuss the impact of these findings on studies of star formation and the interstellar medium, and the broad range of new investigations enabled by multiscale maps of the DFN.
  •  
3.
  • Henshaw, Jonathan D., et al. (författare)
  • Ubiquitous velocity fluctuations throughout the molecular interstellar medium
  • 2020
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 4:11, s. 1064-1071
  • Tidskriftsartikel (refereegranskat)abstract
    • The density structure of the interstellar medium determines where stars form and release energy, momentum and heavy elements, driving galaxy evolution1–4. Density variations are seeded and amplified by gas motion, but the exact nature of this motion is unknown across spatial scales and galactic environments5. Although dense star-forming gas probably emerges from a combination of instabilities6,7, convergent flows8 and turbulence9, establishing the precise origin is challenging because it requires gas motion to be quantified over many orders of magnitude in spatial scale. Here we measure10–12 the motion of molecular gas in the Milky Way and in nearby galaxy NGC 4321, assembling observations that span a spatial dynamic range 10−1–103 pc. We detect ubiquitous velocity fluctuations across all spatial scales and galactic environments. Statistical analysis of these fluctuations indicates how star-forming gas is assembled. We discover oscillatory gas flows with wavelengths ranging from 0.3–400 pc. These flows are coupled to regularly spaced density enhancements that probably form via gravitational instabilities13,14. We also identify stochastic and scale-free velocity and density fluctuations, consistent with the structure generated in turbulent flows9. Our results demonstrate that the structure of the interstellar medium cannot be considered in isolation. Instead, its formation and evolution are controlled by nested, interdependent flows of matter covering many orders of magnitude in spatial scale.
  •  
4.
  • Rodríguez, M. Jimena, et al. (författare)
  • PHANGS–JWST First Results : Dust-embedded Star Clusters in NGC 7496 Selected via 3.3 μm PAH Emission
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The earliest stages of star formation occur enshrouded in dust and are not observable in the optical. Here we leverage the extraordinary new high-resolution infrared imaging from JWST to begin the study of dust-embedded star clusters in nearby galaxies throughout the Local Volume. We present a technique for identifying dust-embedded clusters in NGC 7496 (18.7 Mpc), the first galaxy to be observed by the PHANGS–JWST Cycle 1 Treasury Survey. We select sources that have strong 3.3 μm PAH emission based on a F300M − F335M color excess and identify 67 candidate embedded clusters. Only eight of these are found in the PHANGS-HST optically selected cluster catalog, and all are young (six have SED fit ages of ∼1 Myr). We find that this sample of embedded cluster candidates may significantly increase the census of young clusters in NGC 7496 from the PHANGS-HST catalog; the number of clusters younger than ∼2 Myr could be increased by a factor of 2. Candidates are preferentially located in dust lanes and are coincident with the peaks in the PHANGS-ALMA CO (2–1) maps. We take a first look at concentration indices, luminosity functions, SEDs spanning from 2700 Å to 21 μm, and stellar masses (estimated to be between ∼104 and 105 M⊙). The methods tested here provide a basis for future work to derive accurate constraints on the physical properties of embedded clusters, characterize the completeness of cluster samples, and expand analysis to all 19 galaxies in the PHANGS–JWST sample, which will enable basic unsolved problems in star formation and cluster evolution to be addressed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy