SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Brüggen M.) srt2:(2020-2023)"

Search: WFRF:(Brüggen M.) > (2020-2023)

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Shimwell, T. W., et al. (author)
  • The LOFAR Two-metre Sky Survey: V. Second data release
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 659
  • Journal article (peer-reviewed)abstract
    • In this data release from the ongoing LOw-Frequency ARray (LOFAR) Two-metre Sky Survey we present 120a 168 MHz images covering 27% of the northern sky. Our coverage is split into two regions centred at approximately 12h45m +44 30a and 1h00m +28 00a and spanning 4178 and 1457 square degrees respectively. The images were derived from 3451 h (7.6 PB) of LOFAR High Band Antenna data which were corrected for the direction-independent instrumental properties as well as direction-dependent ionospheric distortions during extensive, but fully automated, data processing. A catalogue of 4 396 228 radio sources is derived from our total intensity (Stokes I) maps, where the majority of these have never been detected at radio wavelengths before. At 6a resolution, our full bandwidth Stokes I continuum maps with a central frequency of 144 MHz have: a median rms sensitivity of 83 μJy beama 1; a flux density scale accuracy of approximately 10%; an astrometric accuracy of 0.2a; and we estimate the point-source completeness to be 90% at a peak brightness of 0.8 mJy beama 1. By creating three 16 MHz bandwidth images across the band we are able to measure the in-band spectral index of many sources, albeit with an error on the derived spectral index of > a ±a 0.2 which is a consequence of our flux-density scale accuracy and small fractional bandwidth. Our circular polarisation (Stokes V) 20a resolution 120a168 MHz continuum images have a median rms sensitivity of 95 μJy beama 1, and we estimate a Stokes I to Stokes V leakage of 0.056%. Our linear polarisation (Stokes Q and Stokes U) image cubes consist of 480a A a 97.6 kHz wide planes and have a median rms sensitivity per plane of 10.8 mJy beama 1 at 4a and 2.2 mJy beama 1 at 20a; we estimate the Stokes I to Stokes Q/U leakage to be approximately 0.2%. Here we characterise and publicly release our Stokes I, Q, U and V images in addition to the calibrated uv-data to facilitate the thorough scientific exploitation of this unique dataset.
  •  
2.
  • Hartley, Philippa, et al. (author)
  • SKA Science Data Challenge 2: analysis and results
  • 2023
  • In: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 523:2, s. 1967-1993
  • Journal article (peer-reviewed)abstract
    • The Square Kilometre Array Observatory (SKAO) will explore the radio sky to new depths in order to conduct transformational science. SKAO data products made available to astronomers will be correspondingly large and complex, requiring the application of advanced analysis techniques to extract key science findings. To this end, SKAO is conducting a series of Science Data Challenges, each designed to familiarize the scientific community with SKAO data and to drive the development of new analysis techniques. We present the results from Science Data Challenge 2 (SDC2), which invited participants to find and characterize 233 245 neutral hydrogen (H i) sources in a simulated data product representing a 2000 h SKA-Mid spectral line observation from redshifts 0.25-0.5. Through the generous support of eight international supercomputing facilities, participants were able to undertake the Challenge using dedicated computational resources. Alongside the main challenge, 'reproducibility awards' were made in recognition of those pipelines which demonstrated Open Science best practice. The Challenge saw over 100 participants develop a range of new and existing techniques, with results that highlight the strengths of multidisciplinary and collaborative effort. The winning strategy - which combined predictions from two independent machine learning techniques to yield a 20 per cent improvement in overall performance - underscores one of the main Challenge outcomes: that of method complementarity. It is likely that the combination of methods in a so-called ensemble approach will be key to exploiting very large astronomical data sets.
  •  
3.
  • O'Sullivan, S. P., et al. (author)
  • The Faraday Rotation Measure Grid of the LOFAR Two-metre Sky Survey: Data Release 2
  • 2023
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 519:4, s. 5723-5742
  • Journal article (peer-reviewed)abstract
    • A Faraday rotation measure (RM) catalogue, or RM Grid, is a valuable resource for the study of cosmic magnetism. Using the second data release (DR2) from the LOFAR Two-metre Sky Survey (LoTSS), we have produced a catalogue of 2461 extragalactic high-precision RM values across 5720 deg(2) of sky (corresponding to a polarized source areal number density of similar to 0.43 deg(-2)). The linear polarization and RM properties were derived using RM synthesis from the Stokes Q and U channel images at an angular resolution of 20 arcsec across a frequency range of 120 to 168 MHz with a channel bandwidth of 97.6 kHz. The fraction of total intensity sources (>1 mJy beam(-1)) found to be polarized was similar to 0.2 percent. The median detection threshold was 0.6 mJy beam(-1) (8 sigma(QU)), with a median RM uncertainty of 0.06 rad m(-2) (although a systematic uncertainty of up to 0.3 radm(-2) is possible, after the ionosphere RM correction). The median degree of polarization of the detected sources is 1.8 percent, with a range of 0.05 percent to 31 percent. Comparisons with cm-wavelength RMs indicate minimal amounts of Faraday complexity in the LoTSS detections, making them ideal sources for RM Grid studies. Host galaxy identifications were obtained for 88 percent of the sources, along with redshifts for 79 percent (both photometric and spectroscopic), with the median redshift being 0.6. The focus of the current catalogue was on reliability rather than completeness, and we expect future versions of the LoTSS RM Grid to have a higher areal number density. In addition, 25 pulsars were identified, mainly through their high degrees of linear polarization.
  •  
4.
  • Heesen, V., et al. (author)
  • Detection of magnetic fields in the circumgalactic medium of nearby galaxies using Faraday rotation
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 670
  • Journal article (peer-reviewed)abstract
    • Context. The existence of magnetic fields in the circumgalactic medium (CGM) is largely unconstrained. Their detection is important as magnetic fields can have a significant impact on the evolution of the CGM, and, in turn, the fields can serve as tracers for dynamical processes in the CGM. Aims. Using the Faraday rotation of polarised background sources, we aim to detect a possible excess of the rotation measure in the surrounding area of nearby galaxies. Methods. We used 2461 residual rotation measures (RRMs) observed with the LOw Frequency ARray (LOFAR), where the foreground contribution from the Milky Way is subtracted. The RRMs were then studied around a subset of 183 nearby galaxies that was selected by apparent B-band magnitude. Results. We find that, in general, the RRMs show no significant excess for small impact parameters (i.e., the perpendicular distance to the line of sight). However, if we only consider galaxies at higher inclination angles and sightlines that pass close to the minor axis of the galaxies, we find significant excess at impact parameters of less than 100 kpc. The excess in |RRM| is 3.7 rad m-2 with an uncertainty between ±0.9 rad m-2 and ±1.3 rad m-2 depending on the statistical properties of the background (2.8σ - 4.1σ). With electron densities of ∼10-4 cm-3, this suggests magnetic field strengths of a few tenths of a microgauss. Conclusions. Our results suggest a slow decrease in the magnetic field strength with distance from the galactic disc, as expected if the CGM is magnetised by galactic winds and outflows.
  •  
5.
  • Floriddia, Elisa M., et al. (author)
  • Distinct oligodendrocyte populations have spatial preference and different responses to spinal cord injury
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Mature oligodendrocytes (MOLs) show transcriptional heterogeneity, the functional consequences of which are unclear. MOL heterogeneity might correlate with the local environment or their interactions with different neuron types. Here, we show that distinct MOL populations have spatial preference in the mammalian central nervous system (CNS). We found that MOL type 2 (MOL2) is enriched in the spinal cord when compared to the brain, while MOL types 5 and 6 (MOL5/6) increase their contribution to the OL lineage with age in all analyzed regions. MOL2 and MOL5/6 also have distinct spatial preference in the spinal cord regions where motor and sensory tracts run. OL progenitor cells (OPCs) are not specified into distinct MOL populations during development, excluding a major contribution of OPC intrinsic mechanisms determining MOL heterogeneity. In disease, MOL2 and MOL5/6 present different susceptibility during the chronic phase following traumatic spinal cord injury. Our results demonstrate that the distinct MOL populations have different spatial preference and different responses to disease.
  •  
6.
  •  
7.
  • O'Sullivan, S. P., et al. (author)
  • New constraints on the magnetization of the cosmic web using LOFAR Faraday rotation observations
  • 2020
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 495:3, s. 2607-2619
  • Journal article (peer-reviewed)abstract
    • Measuring the properties of extragalactic magnetic fields through the effect of Faraday rotation provides a means to understand the origin and evolution of cosmic magnetism. Here we use data from the LOFAR Two-Metre Sky Survey (LoTSS) to calculate the Faraday rotation measure (RM) of close pairs of extragalactic radio sources. By considering the RM difference (Delta RM) between physical pairs (e.g. double-lobed radio galaxies) and non-physical pairs (i.e. close projected sources on the sky), we statistically isolate the contribution of extragalactic magnetic fields to Delta RM along the line of sight between non-physical pairs. From our analysis, we find no significant difference between the ?RM distributions of the physical and non-physical pairs, limiting the excess Faraday rotation contribution to <1.9 rad/m(2) (similar to 95% confidence). We use this limit with a simple model of an inhomogeneous universe to place an upper limit of 4 nG on the cosmological co-moving magnetic field strength on Mpc scales. We also compare the RM data with a more realistic suite of cosmological MHD simulations, that explore different magnetogenesis scenarios. Both magnetization of the large scale structure by astrophysical processes such as galactic and AGN outflows, and simple primordial scenarios with seed magnetic field strengths <0.5 nG cannot be rejected by the current data; while stronger primordial fields or models with dynamo amplification in filaments are disfavoured.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view