SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brundin RoseMarie) srt2:(2020-2024)"

Sökning: WFRF:(Brundin RoseMarie) > (2020-2024)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de la Vega, Maria Pagnon, et al. (författare)
  • The Uppsala APP deletion causes early onset autosomal dominant Alzheimer's disease by altering APP processing and increasing amyloid beta fibril formation
  • 2021
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 13:606
  • Tidskriftsartikel (refereegranskat)abstract
    • Point mutations in the amyloid precursor protein gene (APP) cause familial Alzheimer's disease (AD) by increasing generation or altering conformation of amyloid beta (A beta). Here, we describe the Uppsala APP mutation (Delta 690-695), the first reported deletion causing autosomal dominant AD. Affected individuals have an age at symptom onset in their early forties and suffer from a rapidly progressing disease course. Symptoms and biomarkers are typical of AD, with the exception of normal cerebrospinal fluid (CSF) A beta 42 and only slightly pathological amyloid-positron emission tomography signals. Mass spectrometry and Western blot analyses of patient CSF and media from experimental cell cultures indicate that the Uppsala APP mutation alters APP processing by increasing beta-secretase cleavage and affecting alpha-secretase cleavage. Furthermore, in vitro aggregation studies and analyses of patient brain tissue samples indicate that the longer form of mutated A beta, A beta Upp1-42(Delta 19-24), accelerates the formation of fibrils with unique polymorphs and their deposition into amyloid plaques in the affected brain.
  •  
2.
  • Pagnon de la Vega, María, 1994-, et al. (författare)
  • Mutation analysis of disease causing genes in patients with early onset or familial forms of Alzheimer’s disease and frontotemporal dementia
  • 2022
  • Ingår i: BMC Genomics. - : Springer Nature. - 1471-2164. ; 23
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Most dementia disorders have a clear genetic background and a number of disease genes have beenidentified. Mutations in the tau gene (MAPT) lead to frontotemporal dementia (FTD), whereas mutations in the genesfor the amyloid-β precursor protein (APP) and the presenilins (PSEN1, PSEN2) cause early-onset, dominantly inheritedforms of Alzheimer’s disease (AD).Even if mutations causing Mendelian forms of these diseases are uncommon, elucidation of the pathogenic effects ofsuch mutations have proven important for understanding the pathogenic processes. Here, we performed a screen toidentify novel pathogenic mutations in known disease genes among patients undergoing dementia investigation.Results: Using targeted exome sequencing we have screened all coding exons in eleven known dementia genes(PSEN1, PSEN2, APP, MAPT, APOE, GRN, TARDBP, CHMP2B, TREM2, VCP and FUS) in 102 patients with AD, FTD, otherdementia diagnoses or mild cognitive impairment.We found three AD patients with two previously identified pathogenic mutations in PSEN1 (Pro264Leu and Met-146Val). In this screen, we also identified the recently reported APP mutation in two siblings with AD. This mutation,named the Uppsala mutation, consists of a six amino acid intra-amyloid β deletion.In addition, we found several potentially pathogenic mutations in PSEN2, FUS, MAPT, GRN and APOE. Finally, APOE ε4was prevalent in this patient group with an allele frequency of 54%Conclusions: Among the 102 screened patients, we found two disease causing mutations in PSEN1 and one in APP,as well as several potentially pathogenic mutations in other genes related to neurodegenerative disorders. Apart fromgiving important information to the clinical investigation, the identification of disease mutations can contribute to anincreased understanding of disease mechanisms.
  •  
3.
  • Treydte, Kerstin, et al. (författare)
  • Recent human-induced atmospheric drying across Europe unprecedented in the last 400 years
  • 2024
  • Ingår i: NATURE GEOSCIENCE. - 1752-0894 .- 1752-0908. ; 17, s. 58-65
  • Tidskriftsartikel (refereegranskat)abstract
    • The vapor pressure deficit reflects the difference between how much moisture the atmosphere could and actually does hold, a factor that fundamentally affects evapotranspiration, ecosystem functioning, and vegetation carbon uptake. Its spatial variability and long-term trends under natural versus human-influenced climate are poorly known despite being essential for predicting future effects on natural ecosystems and human societies such as crop yield, wildfires, and health. Here we combine regionally distinct reconstructions of pre-industrial summer vapor pressure deficit variability from Europe's largest oxygen-isotope network of tree-ring cellulose with observational records and Earth system model simulations with and without human forcing included. We demonstrate that an intensification of atmospheric drying during the recent decades across different European target regions is unprecedented in a pre-industrial context and that it is attributed to human influence with more than 98% probability. The magnitude of this trend is largest in Western and Central Europe, the Alps and Pyrenees region, and the smallest in southern Fennoscandia. In view of the extreme drought and compound events of the recent years, further atmospheric drying poses an enhanced risk to vegetation, specifically in the densely populated areas of the European temperate lowlands. The atmosphere has dried across most regions of Europe in recent decades, a trend that can be attributed primarily to human impacts, according to tree ring records spanning 400 years and Earth system model simulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy