SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Depaoli D.) srt2:(2022)"

Sökning: WFRF:(Depaoli D.) > (2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abe, H., et al. (författare)
  • Gamma-ray observations of MAXI J1820+070 during the 2018 outburst
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 517:4, s. 4736-4751
  • Tidskriftsartikel (refereegranskat)abstract
    • MAXIJ1820+070 is a low-mass X-ray binary with a black hole (BH) as a compact object. This binary underwent an exceptionally bright X-ray outburst from 2018 March to October, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 h of observations of the MAXI J1820+070 outburst with the H.E.S.S., MAGIC and VERITAS experiments at energies above 200 GeV are presented, together with Fermi-LAT data between 0.1 and 500 GeV, and multiwavelength observations from radio to X-rays. Gamma-ray emission is not detected from MAXI J1820+070, but the obtained upper limits and the multiwavelength data allow us to put meaningful constraints on the source properties under reasonable assumptions regarding the non-thermal particle population and the jet synchrotron spectrum. In particular, it is possible to show that, if a high-energy (HE) gamma-ray emitting region is present during the hard state of the source, its predicted flux should be at most a factor of 20 below the obtained Fermi-LAT upper limits, and closer to them for magnetic fields significantly below equipartition. During the state transitions, under the plausible assumption that electrons are accelerated up to similar to 500 GeV, the multiwavelength data and the gamma-ray upper limits lead consistently to the conclusion that a potential HE and very-HE gamma-ray emitting region should be located at a distance from the BH ranging between 10(11) and 10(13) cm. Similar outbursts from low-mass X-ray binaries might be detectable in the near future with upcoming instruments such as CTA.
  •  
2.
  • Acciari, V.A., et al. (författare)
  • Monitoring the magnetar SGR 1935+2154 with the MAGIC telescopes
  • 2022
  • Ingår i: Proceedings of Science. - 1824-8039. ; 395
  • Konferensbidrag (refereegranskat)abstract
    • The Galactic magnetar SGR 1935+2154 was associated with a bright, millisecond-timescale fast radio burst (FRB) which occured in April 2020, during a flaring episode. This was the first time an FRB was unequivocally associated with a Galactic source, and the first FRB for which the nature of the emitting source was identified. Moreover, it was the first FRB with a counterpart at another wavelength correlated in time, an atypical, hard X-ray burst, which provides clear evidence for accompanying non-thermal processes. The MAGIC Telescopes are Imaging Air Cherenkov Telescopes (IACTs) sensitive to very-high-energy (VHE, E>100 GeV) gamma rays. Located at the center of the camera lies the MAGIC Central pixel, a single fully-modified photosensor-toreadout chain to measure millisecond-duration optical signals, displaying a maximum sensitivity at a wavelength of 350 nm. This allows MAGIC to operate simultaneously both as a VHE gammaray and a fast optical telescope. The MAGIC telescopes have monitored SGR 1935+2154 in a multiwavelength campaign involving X-ray, radio and optical facilities. In this contribution, we will show the results on the search for the VHE counterpart of the first SGR-FRB source in this multiwavelength context, as well as the search for fast optical bursts with the MAGIC Central Pixel.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy