SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Done Chris) srt2:(2020-2023)"

Sökning: WFRF:(Done Chris) > (2020-2023)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kawamura, Tenyo, et al. (författare)
  • A full spectral-timing model to map the accretion flow in black hole binaries : the low/hard state of MAXI J1820+070
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 511:1, s. 536-552
  • Tidskriftsartikel (refereegranskat)abstract
    • The nature and geometry of the accretion flow in the low/hard state of black hole binaries is currently controversial. While most properties are generally explained in the truncated disc/hot inner flow model, the detection of a broad residual around the iron line argues for strong relativistic effects from an untruncated disc. Since spectral fitting alone is somewhat degenerate, we combine it with the additional information in the fast X-ray variability and perform a full spectral-timing analysis for NICER and NuSTAR data on a bright low/hard state of MAXI J1820+070. We model the variability with propagating mass accretion rate fluctuations by combining two separate current insights: that the hot flow is spectrally inhomogeneous, and that there is a discontinuous jump in viscous time-scale between the hot flow and variable disc. Our model naturally gives the double-humped shape of the power spectra, and the increasing high-frequency variability with energy in the second hump. Including reflection and reprocessing from a disc truncated at a few tens of gravitational radii quantitatively reproduces the switch in the lag-frequency spectra, from hard lagging soft at low frequencies (propagation through the variable flow) to the soft lagging hard at the high frequencies (reverberation from the hard X-ray continuum illuminating the disc). The viscous time-scale of the hot flow is derived from the model, and we show how this can be used to observationally test ideas about the origin of the jet.
  •  
2.
  • Kawamura, Tenyo, et al. (författare)
  • MAXI J1820+070 X-ray spectral-timing reveals the nature of the accretion flow in black hole binaries 
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 519:3, s. 4434-4453
  • Tidskriftsartikel (refereegranskat)abstract
    • Black hole X-ray binaries display significant stochastic variability on short time-scales (0.01–100 s), with a complex pattern of lags in correlated variability seen in different energy bands. This behaviour is generally interpreted in a model where slow fluctuations stirred up at large radii propagate down through the accretion flow, modulating faster fluctuations generated at smaller radii. Coupling this scenario with radially stratified emission opens the way to measure the propagation time-scale from data, allowing direct tests of the accretion flow structure. We previously developed a model based on this picture and showed that it could fit the Neutron star Interior Composition Explorer (NICER; 0.5–10 keV) data from the brightest recent black hole transient, MAXI J1820+070. However, here we show it fails when extrapolated to higher energy variability data from the Insight-Hard X-ray Modulation Telescope(HXMT). We extend our model so that the spectrum emitted at each radius changes shape in response to fluctuations (pivoting) rather than just changing normalization. This gives the strong suppression of fractional variability as a function of energy seen in the data. The derived propagation time-scale is slower than predicted by a magnetically arrested disc (MAD), despite this system showing a strong jet. Our new model jointly fits the spectrum and variability up to 50 keV, though still cannot match all the data above this. Nonetheless, the good fit from 3 to 40 keV means the quasi-periodic oscillation (QPO) can most easily be explained as an extrinsic modulation of the flow, such as produced in the Lense–Thirring precession, rather than arising in an additional spectral-timing component such as the jet. 
  •  
3.
  • Wang, Yanan, et al. (författare)
  • The radio detection and accretion properties of the peculiar nuclear transient AT 2019avd
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 520:2, s. 2417-2435
  • Tidskriftsartikel (refereegranskat)abstract
    • AT 2019avd is a nuclear transient detected from infrared to soft X-rays, though its nature is yet unclear. The source has shown two consecutive flaring episodes in the optical and the infrared bands, and its second flare was covered by X-ray monitoring programs. During this flare, the UVOT/Swift photometries revealed two plateaus: one observed after the peak and the other one appeared similar to 240 d later. Meanwhile, our NICER and XRT/Swift campaigns show two declines in the X-ray emission, one during the first optical plateau and one 70-90 d after the optical/UV decline. The evidence suggests that the optical/UV could not have been primarily originated from X-ray reprocessing. Furthermore, we detected a timelag of similar to 16-34 d between the optical and UV emission, which indicates the optical likely comes from UV reprocessing by a gas at a distance of 0.01-0.03 pc. We also report the first VLA and VLBA detection of this source at different frequencies and different stages of the second flare. The information obtained in the radio band - namely a steep and a late-time inverted radio spectrum, a high brightness temperature and a radio-loud state at late times - together with the multiwavelength properties of AT 2019avd suggests the launching and evolution of outflows such as disc winds or jets. In conclusion, we propose that after the ignition of black hole activity in the first flare, a super-Eddington flaring accretion disc formed and settled to a sub-Eddington state by the end of the second flare, associated with a compact radio outflow.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy