SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ekwall Karl) srt2:(2000-2004)"

Sökning: WFRF:(Ekwall Karl) > (2000-2004)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Appelgren, Henrik, et al. (författare)
  • Distinct centromere domain structures with separate functions demonstrated in live fission yeast cells
  • 2003
  • Ingår i: Journal of Cell Science. - : The Company of Biologists. - 0021-9533 .- 1477-9137. ; 116:19, s. 4035-4042
  • Tidskriftsartikel (refereegranskat)abstract
    • Fission yeast (Saccharomyces pombe) centromere DNA is organized in a central core region flanked on either side by a region of outer repeat (otr) sequences. The otr region is known to be heterochromatic and bound by the Swi6 protein whereas the central core region contains an unusual chromatin structure involving the histone H3 variant Cnp1 (S. pombe CENP-A). The central core is the base for formation of the kinetochore structure whereas the flanking region is important for sister centromere cohesion. We have previously shown that the ultrastructural domain structure of S. pombe centromeres in interphase is similar to that of human centromeres. Here we demonstrate that S. pombe centromeres are organized in cytologically distinct domains even in mitosis. Fluorescence in situ hybridization of fixed metaphase cells revealed that the otr regions of the centromere were still held together by cohesion even after the sister kinetochores had separated. In live cells, the central cores and kinetochores of sister chromosomes could be distinguished from one Another when they were subjected to mitotic tension. The function of the different centromeric domains was addressed. Transacting mutations affecting the kinetochore (nuf2) central core domain (mis6) and the heterochromatin domain (rik1) were analyzed in live cells. In interphase, both nuf2 and mis6 caused declustering of centromeres from the spindle pole body whereas centromere clustering was normal in rik1 despite an apparent decondensation defect. The declustering of centromeres in mis6 cells correlated with loss the Ndc80 kinetochore marker protein from the centromeres. Interestingly the declustered centromeres were still restricted to the nuclear periphery thus revealing a kinetochore-independent peripheral localization mechanism for heterochromatin. Time-lapse microscopy of live mis6 and nuf2-1 mutant cells in mitosis showed similar severe misaggregation phenotypes whereas the rik1 mutants showed a mild cohesion defect. Thus, S. pombe centromeres have two distinguishable domains even during mitosis, and our functional analyses support the previous observations that the kinetochore/central core and the heterochromatin domains have distinct functions both in interphase and mitosis.
  •  
2.
  •  
3.
  • Bjerling, Pernilla, et al. (författare)
  • Centromere domain organization and histone modifications
  • 2002
  • Ingår i: Brazilian journal of medical and biological research. - 0100-879X .- 1414-431X. ; 35:5, s. 499-507
  • Tidskriftsartikel (refereegranskat)abstract
    • Centromere function requires the proper coordination of several subfunctions, such as kinetochore assembly, sister chromatid cohesion, binding of kinetochore microtubules, orientation of sister kinetochores to opposite spindle poles, and their movement towards the spindle poles. Centromere structure appears to be organized in different, separable domains in order to accomplish these functions. Despite the conserved nature of centromere functions, the molecular genetic definition of the DNA sequences that form a centromere in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, in the fruit fly Drosophila melanogaster, and in humans has revealed little conservation at the level of centromere DNA sequences. Also at the protein level few centromere proteins are conserved in all of these four organisms and many are unique to the different organisms. The recent analysis of the centromere structure in the yeast S. pombe by electron microscopy and detailed immunofluorescence microscopy of Drosophila centromeres have brought to light striking similarities at the overall structural level between these centromeres and the human centromere. The structural organization of the centromere is generally multilayered with a heterochromaun domain and a central core/inner plate region, which harbors the outer plate structures of the kinetochore. It is becoming increasingly clear that the key factors for assembly and function of the centromere structure are the specialized histories and modified histones which are present in the centromeric heterochromatin and in the chromatin of the central core. Thus, despite the differences in the DNA sequences and the proteins that define a centromere, there is an overall structural similarity between centromeres in evolutionarily diverse eukaryotes.
  •  
4.
  • Bjerling, Pernilla, et al. (författare)
  • Functional divergence between histone deacetylases in fission yeast by distinct cellular localization and in vivo specificity
  • 2002
  • Ingår i: Molecular and Cellular Biology. - 0270-7306 .- 1098-5549. ; 22:7, s. 2170-2181
  • Tidskriftsartikel (refereegranskat)abstract
    • Histone deacetylases (HDACs) are important for gene regulation and the maintenance of heterochromatin in eukaryotes. Schizosaccharomyces pombe was used as a model system to investigate the functional divergence within this conserved enzyme family. S. pombe has three HDACs encoded by the hda1(+), clr(3+), and clr6(+) genes. Strains mutated in these genes have previously been shown to display strikingly different phenotypes when assayed for viability, chromosome loss, and silencing. Here, conserved differences in the substrate binding pocket identify Clr6 and Hda1 as class I HDACs, while Clr3 belongs in the class II family. Furthermore, these HDACs were shown to have strikingly different subcellular localization patterns. Hda1 was localized to the cytoplasm, while most of Clr3 resided throughout the nucleus. Finally, Clr6 was localized exclusively on the chromosomes in a spotted pattern. Interestingly, Clr3, the only HDAC present in the nucleolus, was required for ribosomal DNA (rDNA) silencing. Clr3 presumably acts directly on heterochromatin, since it colocalized with the centromere, mating-type region, and rDNA as visualized by in situ hybridization. In addition, Clr3 could be cross-linked to mat3 in chromatin immunoprecipitation experiments. Western analysis of bulk histone preparations indicated that Hda1 (class I) had a generally low level of activity in vivo and Clr6 (class 1) had a high level of activity and broad in vivo substrate specificity, whereas Clr3 (class II) displayed its main activity on acetylated lysine 14 of histone H3. Thus, the distinct functions of the S. pombe HDACs are likely explained by their distinct cellular localization and their different in vivo specificities.
  •  
5.
  • Carmichael, J B, et al. (författare)
  • Ago1 and Dcr1, two core components of the RNA interference pathway, functionally diverge from Rdp1 in regulating cell cycle events in Schizosaccharomyces pombe
  • 2004
  • Ingår i: Molecular Biology of the Cell. - 1059-1524 .- 1939-4586. ; 15:3, s. 1425-1435
  • Tidskriftsartikel (refereegranskat)abstract
    • In the fission yeast Schizosaccharomyces pombe, three genes that function in the RNA interference (RNAi) pathway, ago1(+), dcr1(+), and rdp1(+), have recently been shown to be important for timely formation of heterochromatin and accurate chromosome segregation. In the present study, we present evidence that null mutants for ago1(+) and dcr1(+) but not rdp1(+), exhibit abnormal cytokinesis, cell cycle arrest deficiencies, and mating defects. Subsequent analyses showed that ago1(+) and dcr1(+) are required for regulated hyperphosphorylation of Cdc2 when encountering genotoxic insults. Because rdp1(+) is dispensable for this process, the functions of ago1(+) and dcr1(+) in this pathway are presumably independent of their roles in RNAi-mediated heterochromatin formation and chromosome segregation. This was further supported by the finding that ago1(+) is a multicopy suppressor of the S-M checkpoint deficiency and cytokinesis defects associated with loss of Dcr1 function, but not for the chromosome segregation defects of this mutant. Accordingly, we conclude that Dcr1-dependent production of small interfering RNAs is not required for enactment and/or maintenance of certain cell cycle checkpoints and that Ago1 and Dcr1 functionally diverge from Rdp1 to control cell cycle events in fission yeast. Finally, exogenous expression of hGERp95/EIF2C2/hAgo2, a human Ago1 homolog implicated in posttranscriptional gene silencing, compensated for the loss of ago1(+) function in S. pombe. This suggests that PPD proteins may also be important for regulation of cell cycle events in higher eukaryotes.
  •  
6.
  •  
7.
  • Ekwall, Karl (författare)
  • The roles of histone modifications and small RNA in centromere function
  • 2004
  • Ingår i: Chromosome Research. - 0967-3849 .- 1573-6849. ; 12:6, s. 535-542
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, epigenetic regulation of centromeric chromatin in fission yeast (Schizosaccharomyces pombe) is reviewed, focussing on the role of histone modifications and the link to RNA interference (RNAi). Fission yeast centromeres are organized into two structurally and functionally distinct domains, both of which are required for centromere function. The central core domain anchors the kinetochore structure while the flanking heterochromatin domain is important for sister centromere cohesion. The chromatin structure of both domains is regulated epigenetically. In the central core domain, the histone H3 variant Cnp1(CENP-A) plays a key role. In the flanking heterochromatin domain, histones are kept underacetylated by the histone deacetylases (HDACs) Clr3, Clr6 and Sir2, and methylated by Clr4 methyltransferase (HMTase) to create a specific binding site for the Swi6 protein. Swi6 then directly mediates cohesin binding to the centromeric heterochromatin. Recently, a surprising link was made between heterochromatin formation and RNAi. Centromeric flanking repeats are transcribed and the transcripts processed by the RNAse III-like enzyme, Dicer (Dcr1), to produce small interfering RNAs ( siRNA), which direct formation of heterochromatin via the RNA-induced Initiation of Transcriptional Silencing (RITS) protein complex. Consequently Dicer, Argonaute (Ago1), an RNA-dependent RNA polymerase (Rdp1) and several hitherto uncharacterized Csp ( centromere suppressor of position effect) gene products implicated in the RNAi pathway at centromeres are required for sister chromatid cohesion.
  •  
8.
  • Facanha, A L O, et al. (författare)
  • The endoplasmic reticulum cation P-type ATPase Cta4p is required for control of cell shape and microtubule dynamics
  • 2002
  • Ingår i: Journal of Cell Biology. - : Rockefeller University Press. - 0021-9525 .- 1540-8140. ; 157:6, s. 1029-1039
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we describe the phenotypic characterization of the cta(4+) gene, encoding a novel member of the P4 family of P-type ATPases of fission yeast. The cta4Delta mutant is temperature sensitive and cold sensitive lethal and displays several morphological defects in cell polarity and cytokinesis. Microtubules are generally destabilized in cells lacking Cta4p. The microtubule length is decreased, and the number of microtubules per cell is increased. This is concomitant with an increase in the number of microtubule catastrophe events in the midzone of the cell. These defects are likely due to a general imbalance in cation homeostasis. Immunofluorescence microscopy and membrane fractionation experiments revealed that green fluorescent protein-tagged Cta4 localizes to the ER. Fluorescence resonance energy transfer experiments in living cells using the yellow cameleon indicator for Ca2+ indicated that Cta4p regulates the cellular Ca2+ concentration. Thus, our results reveal a link between cation homeostasis and the control of cell shape, microtubule dynamics, and cytokinesis, and appoint Ca2+ as a key ion in controlling these processes.
  •  
9.
  • Hallberg, Magnus, 1974- (författare)
  • Studies of Functional Interactions within Yeast Mediator and a Proposed Novel Mechanism for Regulation of Gene Expression
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The yeast Mediator complex is required for transcriptional regulation both in vivo and in vitro and the identification of similar complexes from metazoans indicates that its function is conserved through evolution. Mediator subunit composition and structure is well characterized both by biochemical, genetic and biophysical methods. In contrast, little is known about the mechanisms by which Mediator operates and how the complex is regulated. The aim of my thesis was to elucidate how Mediator functions at the molecular level and to investigate functional interactions within Mediator. It is possible to recruit RNA polymerase II to a target promoter and thus to activate transcription by fusing Mediator subunits to a DNA binding domain. In order to investigate functional interactions within Mediator, we made such fusion proteins where different Mediator subunits were fused to the DNA binding domain of lexA. The expression of a reporter gene containing binding sites for lexA was subsequently measured in both a wild type strain and in strains where genes encoding specific Mediator subunits had been disrupted. We found that lexA-Med2 and lexA-Gal11 are strong activators that function independently of all Mediator subunits tested. On the other hand, lexA-Srb10 is a weak activator that depends on Srb8 and Srb11 and lexA-Med1 and lexA-Srb7 are both cryptic activators that become active in the absence of Srb8, Srb10, Srb11, or Sin4. Both lexA-Med1 and lexA-Srb7 proteins showed a stable association with the Mediator subunits Med4 and Med8 in wild type cells and in all deletion strains tested, indicating that they were functionally incorporated into the Mediator complex. We also showed that both Med4 and Med8 exist in two forms that differed in electrophoretic mobility and that these forms differed in their ability to associate with Mediator immuno-purified from the LEXA-SRB7 and LEXA-MED1 strains. Dephosphorylation assays of purified Mediator indicated that the two mobility forms of Med4 corresponded to the phosphorylated and unphosphorylated forms of the Med4 protein respectively. Some of the data presented in this study as well as previous genetic and biochemical data obtained in our lab suggested a functional link between the Med1, Med2, Srb10 and Srb11 proteins. We extended these findings by showing that the Srb10 kinase phosphorylates the Med2 protein at residue serine 208, both in vitro and in vivo. We also showed that a point mutation of the single phosphorylation site to an alanine or to an aspartic acid residue altered the gene expression of a specific set of genes. Taken together, these data indicate that posttranslational modification of Mediator subunits is a so far uncharacterized mechanism for regulation of gene expression. In order to study the function of the Srb7 subunit of Mediator, we isolated a temperature sensitive strain where the amino acids 2 to 8 of srb7 were deleted. The Mediator subunits Nut2 and Med7 were isolated as high copy suppressor of srb7-∆(2-8) and we were also able to show that Srb7 interacted with Nut2 and Med7 both in a 2-hybrid system and in co-immuno precipitation experiments using recombinantly expressed proteins. Interestingly, a deletion of amino acids 2 to 8 of Srb7 abolishes its interaction with both Med7 and Nut2 in vitro. Med4 also interacted with Srb7 in the 2-hybrid system and surprisingly, the first eight amino acids of Srb7 were shown to be sufficient for this interaction.
  •  
10.
  • Kanduri, Meena, 1974- (författare)
  • The Functional Significance and Chromatin Organisation of the Imprinting Control Regions of the H19 and Kcnq1 Genes
  • 2004
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Genomic imprinting is a phenomenon through which a subset of genes are epigenetically marked during gemtogenisis. This mark is maintained in the soma to often manifest parent of origin-specific monoalleleic expresson patterns. Genetics evidence suggests that gene expression patterns in mprinted genes, which are frequently organised in clusters, are regulated by the imprinting control regions (ICR). This thesis is mainly focused on the mechanisms through which the ICRs control the imprinting in the cluster, containing the Kcnq1, Igf2 and H19 genes, located at the distal end of mouse chromosome 7. The H19 ICR, located in the 5' flank of the H19 gene represses paternal H19 and maternal Igf2 expression, respectively, but has no effect on Kcnq1 expression, which is controlled by another ICR located at the intron 10 of the Kcnq1 gene. This thesis demonstrates that the maternal H19 ICR allele contains several DNase I hypersensitive sites, which map to target sites for the chromatin insulator protein CTCF at the linker regions between the positioned nucleosomes. The thesis demonstrates that the H19 ICR acts as a unidirectional insulator and that this property invovles three nucleosome positioning sites facilitating interaction between the H19 ICR and CTCF. The Kcnq1 ICR function is much more complex, since it horbours both lineage-specific silencing functions and a methylation sensitive unidirectional chromatin insulator function. Importantly, the thesis demonstrates that the Kcnq1 ICR spreads DNA methylation into flanking region only when it is itself unmethylated. Both the methylation spreading and silencing functions map to the same regions. In conclusion, the thesis has unraveled and unrivalled complexity of the epigenetic control and function of short strtches of sequences. The epigenetic status of these cis elements conspires to control long-range silencing and insulation. The manner these imprinting control regions can cause havoc in expresson domains in human diseases is hence emerging.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy