SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Fayolle D.) srt2:(2015-2017)"

Search: WFRF:(Fayolle D.) > (2015-2017)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Coutens, A., et al. (author)
  • The ALMA-PILS survey: First detections of deuterated formamide and deuterated isocyanic acid in the interstellar medium
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 590
  • Journal article (peer-reviewed)abstract
    • Formamide (NH2CHO) has previously been detected in several star-forming regions and is thought to be a precursor for different prebiotic molecules. Its formation mechanism is still debated, however. Observations of formamide, related species, and their isopotologues may provide useful clues to the chemical pathways leading to their formation. The Protostellar Interferometric Line Survey (PILS) represents an unbiased, high angular resolution and sensitivity spectral survey of the low-mass protostellar binary IRAS 16293-2422 with the Atacama Large Millimeter/submillimeter Array (ALMA). For the first time, we detect the three singly deuterated forms of NH2CHO (NH2CDO, cis-and trans-NHDCHO), as well as DNCO towards the component B of this binary source. The images reveal that the different isotopologues are all present in the same region. Based on observations of the 13C isotopologues of formamide and a standard 12C/13C ratio, the deuterium fractionation is found to be similar for the three different forms with a value of about 2%. The DNCO/HNCO ratio is also comparable to the D/H ratio of formamide (~1%). These results are in agreement with the hypothesis that NH2CHO and HNCO are chemically related through grain-surface formation.
  •  
2.
  • Fayolle, E. C., et al. (author)
  • Protostellar and cometary detections of organohalogens
  • 2017
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 1:10, s. 703-708
  • Journal article (peer-reviewed)abstract
    • Organohalogens, a class of molecules that contain at least one halogen atom bonded to carbon, are abundant on the Earth where they are mainly produced through industrial and biological processes(1). Consequently, they have been proposed as biomarkers in the search for life on exoplanets(2). Simple halogen hydrides have been detected in interstellar sources and in comets, but the presence and possible incorporation of more complex halogen-containing molecules such as organohalogens into planet-forming regions is uncertain(3,4). Here we report the interstellar detection of two isotopologues of the organohalogen CH3Cl and put some constraints on CH3F in the gas surrounding the low-mass protostar IRAS 16293-2422, using the Atacama Large Millimeter/submillimeter Array (ALMA). We also find CH3Cl in the coma of comet 67P/Churyumov-Gerasimenko (67P/C-G) by using the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument. The detections reveal an efficient pre-planetary formation pathway of organohalogens. Cometary impacts may deliver these species to young planets and should thus be included as a potential abiotical production source when interpreting future organohalogen detections in atmospheres of rocky planets.
  •  
3.
  • Jorgensen, J. K., et al. (author)
  • The ALMA Protostellar Interferometric Line Survey (PILS) First results from an unbiased submillimeter wavelength line survey of the Class 0 protostellar binary IRAS 16293-2422 with ALMA
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 595, s. Art no A117-
  • Journal article (peer-reviewed)abstract
    • Context. The inner regions of the envelopes surrounding young protostars are characterized by a complex chemistry, with prebiotic molecules present on the scales where protoplanetary disks eventually may form. The Atacama Large Millimeter/submillimeter Array (ALMA) provides an unprecedented view of these regions zooming in on solar system scales of nearby protostars and mapping the emission from rare species. Aims. The goal is to introduce a systematic survey, the Protostellar Interferometric Line Survey (PILS), of the chemical complexity of one of the nearby astrochemical templates, the Class 0 protostellar binary IRAS 16293 2422, using ALMA in order to understand the origin of the complex molecules formed in its vicinity. In addition to presenting the overall survey, the analysis in this paper focuses on new results for the prebiotic molecule glycolaldehyde, its isomers, and rarer isotopologues and other related molecules. Methods. An unbiased spectral survey of IRAS 16293 2422 covering the full frequency range from 329 to 363 GHz (0.8 mm) has been obtained with ALMA, in addition to a few targeted observations at 3.0 and 1.3 mm. The data consist of full maps of the protostellar binary system with an angular resolution of 0.5 '' (60 AU diameter), a spectral resolution of 0.2 km s(-1), and a sensitivity of 4-5 mJy beam(-1) km s(-1), which is approximately two orders of magnitude better than any previous studies. Results. More than 10 000 features are detected toward one component in the protostellar binary, corresponding to an average line density of approximately one line per 3 km s(-1). Glycolaldehyde; its isomers, methyl formate and acetic acid; and its reduced alcohol, ethylene glycol, are clearly detected and their emission well-modeled with an excitation temperature of 300 K. For ethylene glycol both lowest state conformers, aGg' and gGg', are detected, the latter for the first time in the interstellar medium (ISM). The abundance of glycolaldehyde is comparable to or slightly larger than that of ethylene glycol. In comparison to the Galactic Center these two species are over-abundant relative to methanol, possibly an indication of formation of the species at low temperatures in CO-rich ices during the infall of the material toward the central protostar. Both C-13 and the deuterated isotopologues of glycolaldehyde are detected, also for the first time ever in the ISM. For the deuterated species, a D/H ratio of approximate to 5% is found with no differences between the deuteration in the different functional groups of glycolaldehyde, in contrast to previous estimates for methanol and recent suggestions of significant equilibration between water and-OH functional groups at high temperatures. Measurements of the C-13-species lead to a C-12:C-13 ratio of approximate to 30, lower than the typical ISM value. This low ratio may reflect an enhancement of (CO)-C-13 in the ice due to either ion-molecule reactions in the gas before freeze-out or to differences in the temperatures where (CO)-C-12 and (CO)-C-13 ices sublimate. Conclusions. The results reinforce the importance of low-temperature grain surface chemistry for the formation of prebiotic molecules seen here in the gas after sublimation of the entire ice mantle. Systematic surveys of the molecules thought to be chemically related, as well as the accurate measurements of their isotopic composition, hold strong promise for understanding the origin of prebiotic molecules in the earliest stages of young stars.
  •  
4.
  • Lykke, J. M., et al. (author)
  • The ALMA-PILS survey: First detections of ethylene oxide, acetone and propanal toward the low-mass protostar IRAS 16293-2422
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 597, s. A53-
  • Journal article (peer-reviewed)abstract
    • Context. One of the open questions in astrochemistry is how complex organic and prebiotic molecules are formed. The unsurpassed sensitivity of the Atacama Large Millimeter/submillimeter Array (ALMA) takes the quest for discovering molecules in the warm and dense gas surrounding young stars to the next level. Aims. Our aim is to start the process of compiling an inventory of oxygen-bearing complex organic molecules toward the solar-type Class 0 protostellar binary IRAS 16293-2422 from an unbiased spectral survey with ALMA, Protostellar Interferometric Line Survey (PILS). Here we focus on the new detections of ethylene oxide (c-C2H4O), acetone (CH3COCH3), and propanal (C2H5CHO). Methods. With ALMA, we surveyed the spectral range from 329 to 363 GHz at 0.5? (60 AU diameter) resolution. Using a simple model for the molecular emission in local thermodynamical equilibrium, the excitation temperatures and column densities of each species were constrained. Results. We successfully detect propanal (44 lines), ethylene oxide (20 lines) and acetone (186 lines) toward one component of the protostellar binary, IRAS 16293B. The high resolution maps demonstrate that the emission for all investigated species originates from the compact central region close to the protostar. This, along with a derived common excitation temperature of Tex ? 125 K, is consistent with a coexistence of these molecules in the same gas. Conclusions. The observations mark the first detections of acetone, propanal and ethylene oxide toward a low-mass protostar. The relative abundance ratios of the two sets of isomers, a CH3COCH3/C2H5CHO ratio of 8 and a CH3CHO/c-C2H4O ratio of 12, are comparable to previous observations toward high-mass protostars. The majority of observed abundance ratios from these results as well as those measured toward high-mass protostars are up to an order of magnitude above the predictions from chemical models. This may reflect either missing reactions or uncertain rates in the chemical networks. The physical conditions, such as temperatures or densities, used in the models, may not be applicable to solar-type protostars either.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view