SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Folland Chris) srt2:(2010-2014)"

Sökning: WFRF:(Folland Chris) > (2010-2014)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blunden, Jessica, et al. (författare)
  • State of the Climate in 2012
  • 2013
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 94:8, s. S1-S258
  • Tidskriftsartikel (refereegranskat)abstract
    • For the first time in serveral years, the El Nino-Southern Oscillation did not dominate regional climate conditions around the globe. A weak La Ni a dissipated to ENSOneutral conditions by spring, and while El Nino appeared to be emerging during summer, this phase never fully developed as sea surface temperatures in the eastern conditions. Nevertheless, other large-scale climate patterns and extreme weather events impacted various regions during the year. A negative phase of the Arctic Oscillation from mid-January to early February contributed to frigid conditions in parts of northern Africa, eastern Europe, and western Asia. A lack of rain during the 2012 wet season led to the worst drought in at least the past three decades for northeastern Brazil. Central North America also experienced one of its most severe droughts on record. The Caribbean observed a very wet dry season and it was the Sahel's wettest rainy season in 50 years. Overall, the 2012 average temperature across global land and ocean surfaces ranked among the 10 warmest years on record. The global land surface temperature alone was also among the 10 warmest on record. In the upper atmosphere, the average stratospheric temperature was record or near-record cold, depending on the dataset. After a 30-year warming trend from 1970 to 1999 for global sea surface temperatures, the period 2000-12 had little further trend. This may be linked to the prevalence of La Ni a-like conditions during the 21st century. Heat content in the upper 700 m of the ocean remained near record high levels in 2012. Net increases from 2011 to 2012 were observed at 700-m to 2000-m depth and even in the abyssal ocean below. Following sharp decreases in to the effects of La Ni a, sea levels rebounded to reach records highs in 2012. The increased hydrological cycle seen in recent years continued, with more evaporation in drier locations and more precipitation in rainy areas. In a pattern that has held since 2004, salty areas of the ocean surfaces and subsurfaces were anomalously salty on average, while fresher areas were anomalously fresh. Global tropical cyclone activity during 2012 was near average, with a total of 84 storms compared with the 1981-2010 average of 89. Similar to 2010 and 2011, the North Atlantic was the only hurricane basin that experienced above-normal activity. In this basin, Sandy brought devastation to Cuba and parts of the eastern North American seaboard. All other basins experienced either near-or below-normal tropical cyclone activity. Only three tropical cyclones reached Category 5 intensity-all in Bopha became the only storm in the historical record to produce winds greater than 130 kt south of 7 N. It was also the costliest storm to affect the Philippines and killed more than 1000 residents. Minimum Arctic sea ice extent in September and Northern Hemisphere snow cover extent in June both reached new record lows. June snow cover extent is now declining at a faster rate (-17.6% per decade) than September sea ice extent (-13.0% per decade). Permafrost temperatures reached record high values in northernmost Alaska. A new melt extent record occurred on 11-12 July on the Greenland ice sheet; 97% of the ice sheet showed some form of melt, four times greater than the average melt for this time of year. The climate in Antarctica was relatively stable overall. The largest maximum sea ice extent since records begain in 1978 was observed in September 2012. In the stratosphere, warm air led to the second smallest ozone hole in the past two decades. Even so, the springtime ozone layer above Antarctica likely will not return to its early 1980s state until about 2060. Following a slight decline associated with the global 2 emissions from fossil fuel combustion and cement production reached a record 9.5 +/- 0.5 Pg C in 2011 and a new record of 9.7 +/- 0.5 Pg C is estimated for 2012. Atmospheric CO2 concentrations increased by 2.1 ppm in 2012, to 392.6 ppm. In spring 2012, 2 concentration exceeded 400 ppm at 7 of the 13 Arctic observation sites. Globally, other greenhouse gases including methane and nitrous oxide also continued to rise in concentration and the combined effect now represents a 32% increase in radiative forcing over a 1990 baseline. Concentrations of most ozone depleting substances continued to fall.
  •  
2.
  • Blunden, Jessica, et al. (författare)
  • State of the climate in 2013
  • 2014
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 95, s. S1-S279
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2014, American Meteorological Society. All rights reserved. In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earth’s surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series.
  •  
3.
  • Folland, Chris K., et al. (författare)
  • High predictive skill of global surface temperature a year ahead
  • 2013
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276. ; 40:4, s. 761-767
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] We discuss 13 real-time forecasts of global annual-mean surface temperature issued by the United Kingdom Met Office for 1 year ahead for 2000–2012. These involve statistical, and since 2008, initialized dynamical forecasts using the Met Office DePreSys system. For the period when the statistical forecast system changed little, 2000–2010, issued forecasts had a high correlation of 0.74 with observations and a root mean square error of 0.07°C. However, the HadCRUT data sets against which issued forecasts were verified were biased slightly cold, especially from 2004, because of data gaps in the strongly warming Arctic. This observational cold bias was mainly responsible for a statistically significant warm bias in the 2000–2010 forecasts of 0.06°C. Climate forcing data sets used in the statistical method, and verification data, have recently been modified, increasing hindcast correlation skill to 0.80 with no significant bias. Dynamical hindcasts for 2000–2011 have a similar correlation skill of 0.78 and skillfully hindcast annual mean spatial global surface temperature patterns. Such skill indicates that we have a good understanding of the main factors influencing global mean surface temperature.
  •  
4.
  • Jeong, J. H., et al. (författare)
  • Impacts of Snow Initialization on Subseasonal Forecasts of Surface Air Temperature for the Cold Season
  • 2013
  • Ingår i: Journal of Climate. - : American Meteorological Society. - 0894-8755 .- 1520-0442. ; 26:6, s. 1956-1972
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study examines the impacts of snow initialization on surface air temperature by a number of ensemble seasonal predictability experiments using the NCAR Community Atmosphere Model version 3 (CAM3) AGCM with and without snow initialization. The study attempts to isolate snow signals on surface air temperature. In this preliminary study, any effects of variations in sea ice extent are ignored and do not explicitly identify possible impacts on atmospheric circulation. The Canadian Meteorological Center (CMC) daily snow depth analysis was used in defining initial snow states, where anomaly rescaling was applied in order to account for the systematic bias of the CAM3 snow depth with respect to the CMC analysis. Two suites of seasonal (3 months long) ensemble hindcasts starting at each month in the colder part of the year (September–April) with and without the snow initialization were performed for 12 recent years (1999–2010), and the predictability skill of surface air temperature was estimated. Results show that considerable potential predictability increases up to 2 months ahead can be attained using snow initialization. Relatively large increases are found over East Asia, western Russia, and western Canada in the later part of this period. It is suggested that the predictability increases are sensitive to the strength of snow–albedo feedback determined by given local climate conditions; large gains tend to exist over the regions of strong snow–albedo feedback. Implications of these results for seasonal predictability over the extratropical Northern Hemisphere and future direction for this research are discussed.
  •  
5.
  • Linderholm, Hans W., 1968, et al. (författare)
  • Exploring teleconnections between the summer NAO (SNAO) and climate in East Asia over the last four centuries – a tree-ring perspective
  • 2013
  • Ingår i: Dendrochronologia. - : Elsevier BV. - 1125-7865. ; 31:4, s. 297-310
  • Tidskriftsartikel (refereegranskat)abstract
    • The summer North Atlantic Oscillation (SNAO), derived from the first EOF of mean sea level pressure over the extratropical North Atlantic in July and August, has a close association with climate variability over the North Atlantic region, and beyond, on both short and long time scales. Recent findings suggested a teleconnection, through the SNAO, linking climate variability over Northern Europe with that of East Asia in the latter part of the twentieth century. Here we investigate the temporal stability of that teleconnection for the last four centuries using 4261 tree-ring width series from 106 sites and, additionally, ten climate reconstructions from East Asia. Our results showed a great potential in using tree-ring width (TRW) data to extend analyses of the SNAO influence on East Asian climate beyond the instrumental period, but preferably with a denser network. The strongest SNAO-TRW associations were found in central East Asia (in and around Mongolia) and on the eastern edge of the Tibetan Plateau. In addition, the analysis showed that the association between the SNAO and East Asian climate over the last 400 years has been variable, both among regions and at specific sites. Moreover, a clear difference in the SNAO-TRW associations was found on two examined time scales, being stronger on longer timescales. Our results indicate that TRW data can be a useful tool to explore the remote influence of the SNAO on East Asian climate in the past.
  •  
6.
  • Linderholm, Hans W., 1968, et al. (författare)
  • Interannual teleconnections between the summer North Atlantic Oscillation and the East Asian summer monsoon
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116:D13
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we present a study of the relationship between July–August (JA) mean climate over China, which is strongly linked to the East Asian summer monsoon (EASM), and the summer (JA) North Atlantic Oscillation (SNAO). The variations of temperature, precipitation, and cloud cover related to the SNAO were analyzed for the period 1951–2002 using gridded data sets as well as instrumental data from 160 stations in China. It was shown that the major patterns of summer climate over China are highly connected with the interannual variation of the SNAO, supporting a teleconnection between the North Atlantic region and East Asia. Based on the analyses of the daily and monthly reanalysis data sets, we propose possible mechanisms of this teleconnection. Changes in the position of the North Atlantic storm tracks and transient eddy activity associated with the positive (negative) SNAO phase contribute downstream to negative (positive) sea level pressure anomalies in northeastern East Asia. In negative SNAO years, a stationary wave pattern is excited from the southern SNAO center over northwestern Europe to northeastern East Asia. However, during positive SNAO years, a stationary wave pattern is excited extending from the SNAO center across the central Eurasian continent at around 40°N and downstream to the southeast. This may explain a connection between the positive SNAO and atmospheric circulation in middle and southeastern China.
  •  
7.
  • Scaife, A. A., et al. (författare)
  • Skillful long-range prediction of European and North American winters
  • 2014
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 41:7, s. 2514-2519
  • Tidskriftsartikel (refereegranskat)abstract
    • Until recently, long-range forecast systems showed only modest levels of skill in predicting surface winter climate around the Atlantic Basin and associated fluctuations in the North Atlantic Oscillation at seasonal lead times. Here we use a new forecast system to assess seasonal predictability of winter North Atlantic climate. We demonstrate that key aspects of European and North American winter climate and the surface North Atlantic Oscillation are highly predictable months ahead. We demonstrate high levels of prediction skill in retrospective forecasts of the surface North Atlantic Oscillation, winter storminess, near-surface temperature, and wind speed, all of which have high value for planning and adaptation to extreme winter conditions. Analysis of forecast ensembles suggests that while useful levels of seasonal forecast skill have now been achieved, key sources of predictability are still only partially represented and there is further untapped predictability. The winter NAO can be skilfully predicted months ahead The signal-to-noise ratio of the predictable signal is anomalously low Predictions of the risk of regional winter extremes are possible
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy