SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Goldman D.) srt2:(2020-2024)"

Sökning: WFRF:(Goldman D.) > (2020-2024)

  • Resultat 1-10 av 60
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
2.
  •  
3.
  • Munn-Chernoff, M. A., et al. (författare)
  • Shared genetic risk between eating disorder- and substance-use-related phenotypes: Evidence from genome-wide association studies
  • 2021
  • Ingår i: Addiction Biology. - : Wiley. - 1355-6215 .- 1369-1600. ; 26:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa and problem alcohol use (genetic correlation [r(g)], twin-based = 0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge eating, AN without binge eating, and a bulimia nervosa factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder and schizophrenia. Total study sample sizes per phenotype ranged from similar to 2400 to similar to 537 000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder- and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (r(g) = 0.18; false discovery rate q = 0.0006), cannabis initiation and AN (r(g) = 0.23; q < 0.0001), and cannabis initiation and AN with binge eating (r(g) = 0.27; q = 0.0016). Conversely, significant negative genetic correlations were observed between three nondiagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge eating (r(gs) = -0.19 to -0.23; qs < 0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for major depressive disorder loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships among these behaviors.
  •  
4.
  • Auffray, C., et al. (författare)
  • COVID-19 and beyond : a call for action and audacious solidarity to all the citizens and nations, it is humanity’s fight
  • 2020
  • Ingår i: F1000 Research. - : F1000 Research Ltd. - 2046-1402. ; 9, s. 1130-18
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) belongs to a subgroup of coronaviruses rampant in bats for centuries. It caused the coronavirus disease 2019 (COVID-19) pandemic. Most patients recover, but a minority of severe cases experience acute respiratory distress or an inflammatory storm devastating many organs that can lead to patient death. The spread of SARS-CoV-2 was facilitated by the increasing intensity of air travel, urban congestion and human contact during the past decades. Until therapies and vaccines are available, tests for virus exposure, confinement and distancing measures have helped curb the pandemic. Vision: The COVID-19 pandemic calls for safeguards and remediation measures through a systemic response. Self-organizing initiatives by scientists and citizens are developing an advanced collective intelligence response to the coronavirus crisis. Their integration forms Olympiads of Solidarity and Health. Their ability to optimize our response to COVID-19 could serve as a model to trigger a global metamorphosis of our societies with far-reaching consequences for attacking fundamental challenges facing humanity in the 21st century. Mission: For COVID-19 and these other challenges, there is no alternative but action. Meeting in Paris in 2003, we set out to "rethink research to understand life and improve health." We have formed an international coalition of academia and industry ecosystems taking a systems medicine approach to understanding COVID-19 by thoroughly characterizing viruses, patients and populations during the pandemic, using openly shared tools. All results will be publicly available with no initial claims for intellectual property rights. This World Alliance for Health and Wellbeing will catalyze the creation of medical and health products such as diagnostic tests, drugs and vaccines that become common goods accessible to all, while seeking further alliances with civil society to bridge with socio-ecological and technological approaches that characterise urban systems, for a collective response to future health emergencies. 
  •  
5.
  • Callaway, EM, et al. (författare)
  • A multimodal cell census and atlas of the mammalian primary motor cortex
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 598:7879, s. 86-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties and cellular resolution input–output mapping, integrated through cross-modal computational analysis. Our results advance the collective knowledge and understanding of brain cell-type organization1–5. First, our study reveals a unified molecular genetic landscape of cortical cell types that integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a consensus taxonomy of transcriptomic types and their hierarchical organization that is conserved from mouse to marmoset and human. Third, in situ single-cell transcriptomics provides a spatially resolved cell-type atlas of the motor cortex. Fourth, cross-modal analysis provides compelling evidence for the transcriptomic, epigenomic and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types. We further present an extensive genetic toolset for targeting glutamatergic neuron types towards linking their molecular and developmental identity to their circuit function. Together, our results establish a unifying and mechanistic framework of neuronal cell-type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Escartin, C., et al. (författare)
  • Reactive astrocyte nomenclature, definitions, and future directions
  • 2021
  • Ingår i: Nature Neuroscience. - : Springer Science and Business Media LLC. - 1097-6256 .- 1546-1726. ; 24, s. 312-325
  • Tidskriftsartikel (refereegranskat)abstract
    • Reactive astrocytes are astrocytes undergoing morphological, molecular, and functional remodeling in response to injury, disease, or infection of the CNS. Although this remodeling was first described over a century ago, uncertainties and controversies remain regarding the contribution of reactive astrocytes to CNS diseases, repair, and aging. It is also unclear whether fixed categories of reactive astrocytes exist and, if so, how to identify them. We point out the shortcomings of binary divisions of reactive astrocytes into good-vs-bad, neurotoxic-vs-neuroprotective or A1-vs-A2. We advocate, instead, that research on reactive astrocytes include assessment of multiple molecular and functional parameters-preferably in vivo-plus multivariate statistics and determination of impact on pathological hallmarks in relevant models. These guidelines may spur the discovery of astrocyte-based biomarkers as well as astrocyte-targeting therapies that abrogate detrimental actions of reactive astrocytes, potentiate their neuro- and glioprotective actions, and restore or augment their homeostatic, modulatory, and defensive functions. Good-bad binary classifications fail to describe reactive astrocytes in CNS disorders. Here, 81 researchers reach consensus on widespread misconceptions and provide definitions and recommendations for future research on reactive astrocytes.
  •  
10.
  • Scott, G. D., et al. (författare)
  • Fluid and Tissue Biomarkers of Lewy Body Dementia: Report of an LBDA Symposium
  • 2022
  • Ingår i: Frontiers in Neurology. - : Frontiers Media SA. - 1664-2295. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • The Lewy Body Dementia Association (LBDA) held a virtual event, the LBDA Biofluid/Tissue Biomarker Symposium, on January 25, 2021, to present advances in biomarkers for Lewy body dementia (LBD), which includes dementia with Lewy bodies (DLBs) and Parkinson's disease dementia (PDD). The meeting featured eight internationally known scientists from Europe and the United States and attracted over 200 scientists and physicians from academic centers, the National Institutes of Health, and the pharmaceutical industry. Methods for confirming and quantifying the presence of Lewy body and Alzheimer's pathology and novel biomarkers were discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 60
Typ av publikation
tidskriftsartikel (54)
konferensbidrag (5)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (51)
övrigt vetenskapligt/konstnärligt (9)
Författare/redaktör
Bae, Sang-Cheol (21)
Ramsey-Goldman, Rosa ... (21)
Kamen, Diane L. (21)
Rahman, Anisur (21)
Manzi, Susan (21)
Sanchez-Guerrero, Jo ... (21)
visa fler...
Gladman, Dafna D. (21)
Alarcón, Graciela S. (21)
Bruce, Ian N. (21)
Bernatsky, Sasha (21)
Gordon, Caroline (20)
Aranow, Cynthia (20)
Fortin, Paul R. (20)
Inanc, Murat (20)
Ruiz-Irastorza, Guil ... (19)
Romero-Diaz, Juanita (19)
Merrill, Joan T. (18)
Hanly, John G. (17)
Petri, Michelle (17)
Wallace, Daniel J. (17)
Ginzler, Ellen M. (16)
van Vollenhoven, Ron ... (16)
Askanase, Anca (15)
Jönsen, Andreas (14)
Dooley, Mary Anne (14)
Mackay, Meggan (14)
Clarke, Ann E. (14)
Jacobsen, Søren (13)
Peschken, Christine ... (13)
Nived, Ola (12)
Urowitz, Murray B. (12)
Kalunian, Kenneth C. (12)
Isenberg, David A. (11)
Lim, S. Sam (10)
Steinsson, Kristjan (9)
Urowitz, Murray (9)
Ramos-Casals, Manuel (9)
Peschken, Christine (8)
Isenberg, David (8)
Lim, Sam (8)
Clarke, Ann Elaine (7)
Khamashta, Munther A ... (7)
Zoma, Asad A. (7)
Farewell, Vernon (7)
Stoll, Thomas (6)
Goldman, D (6)
Khamashta, Munther (5)
Goldman, M (5)
Jonsen, Andreas (5)
Dooley, M A (5)
visa färre...
Lärosäte
Karolinska Institutet (35)
Lunds universitet (23)
Göteborgs universitet (8)
Uppsala universitet (7)
Handelshögskolan i Stockholm (3)
Kungliga Tekniska Högskolan (2)
visa fler...
Umeå universitet (1)
Linköpings universitet (1)
visa färre...
Språk
Engelska (60)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (35)
Naturvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy