SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kononenko Olga) "

Sökning: WFRF:(Kononenko Olga)

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sarkisyan, Daniil, et al. (författare)
  • Downregulation of the endogenous opioid peptides in the dorsal striatum of human alcoholics
  • 2015
  • Ingår i: Frontiers in Cellular Neuroscience. - : Frontiers Media SA. - 1662-5102. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The endogenous opioid peptides dynorphins and enkephalins may be involved in brain-area specific synaptic adaptations relevant for different stages of an addiction cycle. We compared the levels of prodynorphin (PDYN) and proenkephalin (PENK) mRNAs (by qRT-PCR), and dynorphins and enkephalins (by radioimmunoassay) in the caudate nucleus and putamen between alcoholics and control subjects. We also evaluated whether PDYN promoter variant rs1997794 associated with alcoholism affects PDYN expression. Postmortem specimens obtained from 24 alcoholics and 26 controls were included in final statistical analysis. PDYN mRNA and Met-enkephalin-Arg-Phe, a marker of PENK were downregulated in the caudate of alcoholics, while PDYN mRNA and Leu-enkephalin-Arg, a marker of PDYN were decreased in the putamen of alcoholics carrying high risk rs1997794 C allele. Downregulation of opioid peptides in the dorsal striatum may contribute to development of alcoholism including changes in goal directed behavior and formation of a compulsive habit in alcoholics.
  •  
2.
  • Watanabe, Hiroyuki, et al. (författare)
  • Left-right side-specific neuropeptide mechanism mediates contralateral responses to a unilateral brain injury
  • 2021
  • Ingår i: eNeuro. - : Society for Neuroscience. - 2373-2822. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuropeptides are implicated in control of lateralized processes in the brain. A unilateral brain injury (UBI) causes the contra- and ipsilesional side-specific postural and sensorimotor deficits. To examine whether opioid neuropeptides mediate UBI induced asymmetric processes we compared effects of opioid antagonists on the contra- and ipsilesional hindlimb responses to the left- and right-sided injury in rats. UBI induced hindlimb postural asymmetry (HL-PA) with the contralesional hindlimb flexion, and activated contralesional withdrawal reflex of extensor digitorum longus (EDL) evoked by electrical stimulation and recorded with EMG technique. No effects on the interossei (Int) and peroneaus longus (PL) were evident. The general opioid antagonist naloxone blocked postural effects, did not change EDL asymmetry while uncovered cryptic asymmetry in the PL and Int reflexes induced by UBI. Thus the spinal opioid system may either mediate or counteract the injury effects. Strikingly, effects of selective opioid antagonists were the injury side-specific. The mu- and kappa-antagonists beta-funaltrexamine and nor-binaltorphimine, respectively, reduced postural asymmetry after the right but not left UBI. In contrast, the delta-antagonist naltrindole inhibited HL-PA after the left but not right side brain injury. The opioid gene expression and opioid peptides were lateralized in the lumbar spinal cord, and coordination between expression of the opioid and neuroplasticity-related genes was impaired by UBI that together may underlie the side-specific effects of the antagonists. We suggest that mirror-symmetric neural circuits that mediate effects of left and right brain injury on the contralesional hindlimbs are differentially controlled by the lateralized opioid system. Significance statement Functional specialization of the left and right hemispheres is an organizing principle of the brain. Lasting regulation of lateralized processes may be accomplished by paracrine neurohormonal mechanisms that preferentially operate in the left or right hemisphere. Our findings support this hypothesis by demonstration that mirror-symmetric neural circuits that control the left and right hindlimbs may be regulated by the left- and right-side specific neuropeptide mechanisms. Neuropeptides may differentially target the left and right counterparts of these circuits, and in this way control the left-right balance in their functional performance. This bipartite mechanism may be based on lateralization of the neuropeptide systems, and may operate in the spinal cord or control neural pathways descending from the brain to contralateral motoneurons.
  •  
3.
  • Zhang, Mengliang, et al. (författare)
  • Hindlimb motor responses to unilateral brain injury : spinal cord encoding and left-right asymmetry
  • 2020
  • Ingår i: Brain Communications. - : Oxford University Press (OUP). - 2632-1297. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanisms of motor deficits (e.g. hemiparesis and hemiplegia) secondary to stroke and traumatic brain injury remain poorly understood. In early animal studies, a unilateral lesion to the cerebellum produced postural asymmetry with ipsilateral hindlimb flexion that was retained after complete spinal cord transection. Here we demonstrate that hindlimb postural asymmetry in rats is induced by a unilateral injury of the hindlimb sensorimotor cortex, and characterize this phenomenon as a model of spinal neuroplasticity underlying asymmetric motor deficits. After cortical lesion, the asymmetry was developed due to the contralesional hindlimb flexion and persisted after decerebration and complete spinal cord transection. The asymmetry induced by the left-side brain injury was eliminated by bilateral lumbar dorsal rhizotomy, but surprisingly, the asymmetry after the right-side brain lesion was resistant to deafferentation. Pancuronium, a curare-mimetic muscle relaxant, abolished the asymmetry after the right-side lesion suggesting its dependence on the efferent drive. The contra- and ipsilesional hindlimbs displayed different musculo-articular resistance to stretch after the left but not right-side injury. The nociceptive withdrawal reflexes evoked by electrical stimulation and recorded with EMG technique were different between the left and right hindlimbs in the spinalized decerebrate rats. On this asymmetric background, a brain injury resulted in greater reflex activation on the contra- versus ipsilesional side; the difference between the limbs was higher after the right-side brain lesion. The unilateral brain injury modified expression of neuroplasticity genes analysed as readout of plastic changes, as well as robustly impaired coordination of their expression within and between the ipsi- and contralesional halves of lumbar spinal cord; the effects were more pronounced after the left side compared to the right-side injury. Our data suggest that changes in the hindlimb posture, resistance to stretch and nociceptive withdrawal reflexes are encoded by neuroplastic processes in lumbar spinal circuits induced by a unilateral brain injury. Two mechanisms, one dependent on and one independent of afferent input may mediate asymmetric hindlimb motor responses. The latter, deafferentation resistant mechanism may be based on sustained muscle contractions which often occur in patients with central lesions and which are not evoked by afferent stimulation. The unusual feature of these mechanisms is their lateralization in the spinal cord.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Bazov, Igor, 1973-, et al. (författare)
  • Downregulation of the neuronal opioid gene expression concomitantly with neuronal decline in dorsolateral prefrontal cortex of human alcoholics
  • 2018
  • Ingår i: Translational Psychiatry. - : NATURE PUBLISHING GROUP. - 2158-3188. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular changes in cortical areas of addicted brain may underlie cognitive impairment and loss of control over intake of addictive substances and alcohol. Prodynorphin (PDYN) gives rise to dynorphin (DYNs) opioid peptides which target kappa-opioid receptor (KOR). DYNs mediate alcohol-induced impairment of learning and memory, while KOR antagonists block excessive, compulsive-like drug and alcohol self-administration in animal models. In human brain, the DYN/KOR system may undergo adaptive changes, which along with neuronal loss, may contribute to alcohol-associated cognitive deficit. We addressed this hypothesis by comparing the expression levels and co-expression (transcriptionally coordinated) patterns of PDYN and KOR (OPRK1) genes in dorsolateral prefrontal cortex (dlPFC) between human alcoholics and controls. Postmortem brain specimens of 53 alcoholics and 55 controls were analyzed. PDYN was found to be downregulated in dlPFC of alcoholics, while OPRK1 transcription was not altered. PDYN downregulation was confined to subgroup of subjects carrying C, a high-risk allele of PDYN promoter SNP rs1997794 associated with alcoholism. Changes in PDYN expression did not depend on the decline in neuronal proportion in alcoholics, and thereby may be attributed to transcriptional adaptations in alcoholic brain. Absolute expression levels of PDYN were lower compared to those of OPRK1, suggesting that PDYN expression is a limiting factor in the DYN/KOR signaling, and that the PDYN downregulation diminishes efficacy of DYN/KOR signaling in dlPFC of human alcoholics. The overall outcome of the DYN/KOR downregulation may be disinhibition of neurotransmission, which when overactivated could contribute to formation of alcohol-related behavior.
  •  
8.
  • Bazov, Igor, 1973-, et al. (författare)
  • Dynorphin and κ-Opioid Receptor Dysregulation in the Dopaminergic Reward System of Human Alcoholics.
  • 2018
  • Ingår i: Molecular Neurobiology. - : Springer. - 0893-7648 .- 1559-1182. ; 55:8, s. 7049-7061
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular changes induced by excessive alcohol consumption may underlie formation of dysphoric state during acute and protracted alcohol withdrawal which leads to craving and relapse. A main molecular addiction hypothesis is that the upregulation of the dynorphin (DYN)/κ-opioid receptor (KOR) system in the nucleus accumbens (NAc) of alcohol-dependent individuals causes the imbalance in activity of D1- and D2 dopamine receptor (DR) expressing neural circuits that results in dysphoria. We here analyzed post-mortem NAc samples of human alcoholics to assess changes in prodynorphin (PDYN) and KOR (OPRK1) gene expression and co-expression (transcriptionally coordinated) patterns. To address alterations in D1- and D2-receptor circuits, we studied the regulatory interactions between these pathways and the DYN/KOR system. No significant differences in PDYN and OPRK1 gene expression levels between alcoholics and controls were evident. However, PDYN and OPRK1 showed transcriptionally coordinated pattern that was significantly different between alcoholics and controls. A downregulation of DRD1 but not DRD2 expression was seen in alcoholics. Expression of DRD1 and DRD2 strongly correlated with that of PDYN and OPRK1 suggesting high levels of transcriptional coordination between these gene clusters. The differences in expression and co-expression patterns were not due to the decline in neuronal proportion in alcoholic brain and thereby represent transcriptional phenomena. Dysregulation of DYN/KOR system and dopamine signaling through both alterations in co-expression patterns of opioid genes and decreased DRD1 gene expression may contribute to imbalance in the activity of D1- and D2-containing pathways which may lead to the negative affective state in human alcoholics.
  •  
9.
  • Bazov, Igor, 1973-, et al. (författare)
  • Neuronal Expression of Opioid Gene is Controlled by Dual Epigenetic and Transcriptional Mechanism in Human Brain
  • 2018
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 28:9, s. 3129-3142
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular mechanisms that define patterns of neuropeptide expression are essential for the formation and rewiring of neural circuits. The prodynorphin gene (PDYN) gives rise to dynorphin opioid peptides mediating depression and substance dependence. We here demonstrated that PDYN is expressed in neurons in human dorsolateral prefrontal cortex (dlPFC), and identified neuronal differentially methylated region in PDYN locus framed by CCCTC-binding factor binding sites. A short, nucleosome size human-specific promoter CpG island (CGI), a core of this region may serve as a regulatory module, which is hypomethylated in neurons, enriched in 5-hydroxymethylcytosine, and targeted by USF2, a methylation-sensitive E-box transcription factor (TF). USF2 activates PDYN transcription in model systems, and binds to nonmethylated CGI in dlPFC. USF2 and PDYN expression is correlated, and USF2 and PDYN proteins are co-localized in dlPFC. Segregation of activatory TF and repressive CGI methylation may ensure contrasting PDYN expression in neurons and glia in human brain.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30
Typ av publikation
tidskriftsartikel (27)
konferensbidrag (2)
annan publikation (1)
Typ av innehåll
refereegranskat (24)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Kononenko, Olga (30)
Bakalkin, Georgy (28)
Watanabe, Hiroyuki (23)
Sarkisyan, Daniil (20)
Bazov, Igor, 1973- (11)
Yakovleva, Tatiana (10)
visa fler...
Bazov, Igor (10)
Zhang, Mengliang (8)
Schouenborg, Jens (7)
Lukoyanov, Nikolay (7)
Galatenko, Vladimir (6)
Iakovleva, Tatiana (6)
Marklund, Niklas (5)
Birnir, Bryndis (4)
Jin, Zhe (4)
Carvalho, Liliana S. (4)
Stålhandske, Lada (4)
Hussain, Muhammad Zu ... (3)
Yakovleva, Tatjana (3)
Rietschel, M (2)
Nyberg, Fred (2)
Mulder, Jan (2)
Druid, Henrik (2)
Alkass, Kanar (2)
Syvänen, Ann-Christi ... (2)
Andersson, Malin (2)
Frank, J (2)
Nosova, Olga (2)
Karpyak, V. (2)
Verbeek, Dineke S. (2)
Karpyak, Victor M. (2)
Dyachok, Oleg (1)
Nylander, Ingrid (1)
Bleich, Stefan (1)
Yoshitake, Takashi (1)
Kehr, Jan (1)
Syvänen, Ann-Christi ... (1)
Ossipov, Michael H. (1)
Rüegg, Joelle (1)
Andrén, Per (1)
Almamoun, Radwa (1)
Biernacka, Joanna M (1)
Biernacka, J. M. (1)
Frye, M. A. (1)
Zhang, Dandan (1)
Bhandage, Amol K., 1 ... (1)
Hallberg, Mathias, 1 ... (1)
Sommer, Wolfgang H. (1)
Mann, K (1)
Hansson, Anita C (1)
visa färre...
Lärosäte
Uppsala universitet (27)
Örebro universitet (12)
Lunds universitet (7)
Karolinska Institutet (6)
Språk
Engelska (30)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (27)
Naturvetenskap (9)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy