SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Larson Heidi J.) srt2:(2020-2023)"

Sökning: WFRF:(Larson Heidi J.) > (2020-2023)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Windhorst, Rogier A., et al. (författare)
  • JWST PEARLS. Prime extragalactic areas for reionization and lensing science : project overview and first results
  • 2023
  • Ingår i: Astronomical Journal. - : Institute of Physics (IOP). - 0004-6256 .- 1538-3881. ; 165:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We give an overview and describe the rationale, methods, and first results from NIRCam images of the JWST “Prime Extragalactic Areas for Reionization and Lensing Science” (PEARLS) project. PEARLS uses up to eight NIRCam filters to survey several prime extragalactic survey areas: two fields at the North Ecliptic Pole (NEP); seven gravitationally lensing clusters; two high redshift protoclusters; and the iconic backlit VV 191 galaxy system to map its dust attenuation. PEARLS also includes NIRISS spectra for one of the NEP fields and NIRSpec spectra of two high-redshift quasars. The main goal of PEARLS is to study the epoch of galaxy assembly, active galactic nucleus (AGN) growth, and First Light. Five fields—the JWST NEP Time-Domain Field (TDF), IRAC Dark Field, and three lensing clusters—will be observed in up to four epochs over a year. The cadence and sensitivity of the imaging data are ideally suited to find faint variable objects such as weak AGN, high-redshift supernovae, and cluster caustic transits. Both NEP fields have sightlines through our Galaxy, providing significant numbers of very faint brown dwarfs whose proper motions can be studied. Observations from the first spoke in the NEP TDF are public. This paper presents our first PEARLS observations, their NIRCam data reduction and analysis, our first object catalogs, the 0.9–4.5 μm galaxy counts and Integrated Galaxy Light. We assess the JWST sky brightness in 13 NIRCam filters, yielding our first constraints to diffuse light at 0.9–4.5 μm. PEARLS is designed to be of lasting benefit to the community.
  •  
2.
  • Plassais, Jocelyn, et al. (författare)
  • Natural and human-driven selection of a single non-coding body size variant in ancient and modern canids
  • 2022
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 32:4, s. 889-897
  • Tidskriftsartikel (refereegranskat)abstract
    • Domestic dogs (Canis lupus familiaris) are the most variable-sized mammalian species on Earth, displaying a 40-fold size difference between breeds.1 Although dogs of variable size are found in the archeological record,2, 3, 4 the most dramatic shifts in body size are the result of selection over the last two centuries, as dog breeders selected and propagated phenotypic extremes within closed breeding populations.5 Analyses of over 200 domestic breeds have identified approximately 20 body size genes regulating insulin processing, fatty acid metabolism, TGFβ signaling, and skeletal formation.6, 7, 8, 9, 10 Of these, insulin-like growth factor 1 (IGF1) predominates, controlling approximately 15% of body size variation between breeds.8 The identification of a functional mutation associated with IGF1 has thus far proven elusive.6,10,11 Here, to identify and elucidate the role of an ancestral IGF1 allele in the propagation of modern canids, we analyzed 1,431 genome sequences from 13 species, including both ancient and modern canids, thus allowing us to define the evolutionary history of both ancestral and derived alleles at this locus. We identified a single variant in an antisense long non-coding RNA (IGF1-AS) that interacts with the IGF1 gene, creating a duplex. While the derived mutation predominates in both modern gray wolves and large domestic breeds, the ancestral allele, which predisposes to small size, was common in small-sized breeds and smaller wild canids. Our analyses demonstrate that this major regulator of canid body size nearly vanished in Pleistocene wolves, before its recent resurgence resulting from human-imposed selection for small-sized breed dogs.
  •  
3.
  • Yu, He, et al. (författare)
  • Palaeogenomic analysis of black rat (Rattus rattus) reveals multiple European introductions associated with human economic history
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The distribution of the black rat (Rattus rattus) has been heavily influenced by its association with humans. The dispersal history of this non-native commensal rodent across Europe, however, remains poorly understood, and different introductions may have occurred during the Roman and medieval periods. Here, in order to reconstruct the population history of European black rats, we first generate a de novo genome assembly of the black rat. We then sequence 67 ancient and three modern black rat mitogenomes, and 36 ancient and three modern nuclear genomes from archaeological sites spanning the 1st-17th centuries CE in Europe and North Africa. Analyses of our newly reported sequences, together with published mitochondrial DNA sequences, confirm that black rats were introduced into the Mediterranean and Europe from Southwest Asia. Genomic analyses of the ancient rats reveal a population turnover in temperate Europe between the 6th and 10th centuries CE, coincident with an archaeologically attested decline in the black rat population. The near disappearance and re-emergence of black rats in Europe may have been the result of the breakdown of the Roman Empire, the First Plague Pandemic, and/or post-Roman climatic cooling. 'Archaeogenetic analysis of black rat remains reveals that this species was introduced into temperate Europe twice, in the Roman and medieval periods. This population turnover was likely associated with multiple historical and environmental factors.'
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy