SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leion Henrik 1976 ) srt2:(2020-2024)"

Sökning: WFRF:(Leion Henrik 1976 ) > (2020-2024)

  • Resultat 1-10 av 48
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hildor, Fredrik, 1992, et al. (författare)
  • Effect of Weathering on Steel Converter Slag Used as an Oxygen Carrier
  • 2023
  • Ingår i: ACS Omega. - 2470-1343. ; 8:50, s. 47472-47481
  • Tidskriftsartikel (refereegranskat)abstract
    • Steel converter slag, also called LD slag, is a material that has been suggested for use as a low-cost oxygen carrier for chemical looping applications. Low-cost oxygen carriers are especially relevant for the conversion of solid fuels, which may contain large amounts of reactive ashes. Ash may limit the lifetime of the bed material, which is why a high-cost oxygen carrier will likely not be competitive. Applying LD slag on an industrial scale as an oxygen carrier makes the storage properties of the material highly interesting. LD slag has been known to be affected by weathering, thus limiting the possibilities of the material to be used in construction, e.g., as fillers in concrete. In this study, pretreated LD slag for use as an oxygen carrier was weathered outdoors for roughly 1.5 years in southwest Sweden. Afterward, the particles were characterized and used in a laboratory batch fluidized bed reactor system to evaluate the effects of storage on the oxygen carrier properties. It was found that the reactivity with the fuel of the weathered LD slag was similar to that of the original sample when used in a laboratory fluidized bed. However, the physical properties were severely degraded due to weathering. Dissolved CaO formed CaCO3, agglomerating the top layer of the sample. The particles in the bulk of the sample were found to have decreased density and increased attrition rate. This suggests that LD slag particles for use as oxygen carriers should be stored dry to avoid weathering of the particles.
  •  
2.
  • Hildor, Fredrik, 1992, et al. (författare)
  • Metal impregnation on steel converter slag as an oxygen carrier
  • 2023
  • Ingår i: Greenhouse Gases: Science and Technology. - : Wiley. - 2152-3878.
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxygen carriers used in chemical looping processes operated with biofuel are affected by the inorganic matter of the fuel. It is therefore expected that the lifetime of the oxygen carrier is limited, and preferably low-cost oxygen carriers should be used. Oxygen carriers based on iron ore or steel manufacturing waste products are available in significant quantities at low cost. However, it is common for these types of materials that their reactivity is low. This study investigates the effect of adding small amounts of more reactive elements into steel converter slag, also called LD slag. Slag particles were wet impregnated with 2 or 5 wt.% of Ni, Cu, Mn, or Ce. The new material’s morphology was evaluated using X-Ray Diffraction and SEM-EDS. Changes in reactivity towards CO, CH4 and the model tar molecule benzene were evaluated using a bench-scale laboratory fluidized bed reactor. It was observed that even small amounts of either Ni, Cu, or Mn could increase reactivity toward CO. Both Cu and Mn formed phases with LD slag that released oxygen via CLOU (chemical looping with oxygen uncoupling) and increased the conversion of methane and benzene. Ni and Ce doping also increased methane conversion but had only a minor effect on the benzene conversion.
  •  
3.
  • Hildor, Fredrik, 1992, et al. (författare)
  • Steel converter slag as an oxygen carrier for chemical-looping gasification
  • 2020
  • Ingår i: Fuel Processing Technology. - : Elsevier BV. - 0378-3820. ; 210
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical Looping Gasification (CLG) is a dual fluidized bed gasification technique where an oxygen carrier is used as bed material instead of sand. An optimized process could have several advantages, including i) one concentrated CO2 stream, amiable for carbon capture, ii) less tar formation, iii) additional reaction pathways for syngas production, iv) less corrosion and v) CO2 is generated in one stream from the fuel reactor that could be captured. Steel converter slag, also called LD slag, is a by-product from the steel industry which, besides iron, contains significant fractions of Ca, Mg, Al and Mn in a complex matrix of phases. The low cost and presence of known catalytic solid phases in the slag makes it interesting as an oxygen carrier in CLG. In this work, LD slag was investigated using a batch reactor with gaseous and solid fuel as well as with TGA. It was found that during gasification with LD slag, the material can i) transfer oxygen to the fuel, ii) catalyze the water-gas-shift reaction, iii) react with CO2 forming carbonates and iv) split water to hydrogen. The overall result was a raw gas with a higher H2/CO ratio for LD slag than the other tested materials.
  •  
4.
  • Mei, Daofeng, 1986, et al. (författare)
  • Modelling of gas conversion with an analytical reactor model for biomass chemical looping combustion (bio-CLC) of solid fuels
  • 2022
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947 .- 1873-3212. ; 433
  • Tidskriftsartikel (refereegranskat)abstract
    • Manganese ores are promising oxygen carriers for chemical looping combustion (CLC), due to their high reactivity with combustible gases. In this work, a manganese ore called EB (Elwaleed B, originating from Egypt) is studied for its reaction rate with CH4, CO and H2 and the data are used in an analytically solved reactor model. The reactivity of fresh and three used EB samples from previous operation in a 10 kWth pilot was examined in a batch fluidized bed reactor with CH4 and syngas (50%CO + 50%H2). In comparison with other manganese ores, the EB ore has a lower rate of reaction with CH4, while showing a significantly higher reactivity with syngas. Nevertheless, this manganese ore always presents a better conversion of CH4 and syngas than the benchmark ilmenite. Mass-based reaction rate constants were obtained using a pseudo first-order reaction mechanism: 1.1·10-4 m3/(kg·s) for CH4, 6.6·10-3 m3/(kg·s) for CO and 7.5·10-3 m3/(kg·s) for H2. These rate constants were used in an analytical reactor model to further investigate results from previous operation in the 10 kWth unit. According to the analytical model, in the 10 kWth operation, 98% of the char in the biomass fuels was gasified before leaving the fuel reactor, while the char gasification products (CO and H2) have a 90% contact efficiency with the bed material. On the contrary, the volatiles have a much lower contact efficiency with the oxygen carrier bed, i.e. 20%, leading to low conversion of volatiles released. Thus, the results emphasize the importance of improving the contact between volatiles and bed material in order to promote combustion performance in the CLC process.
  •  
5.
  • Mei, Daofeng, 1986, et al. (författare)
  • Oxygen Carrier and Alkali Interaction in Chemical Looping Combustion: Case Study Using a Braunite Mn Ore and Charcoal Impregnated with K 2 CO 3 or Na 2 CO 3
  • 2022
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 1520-5029 .- 0887-0624. ; 36:17, s. 9470-9484
  • Tidskriftsartikel (refereegranskat)abstract
    • Alkali is a problematic component in biomass and may create various operation issues in normal combustion as well as chemical looping combustion using biomass fuels (bio-CLC). To investigate the interaction of alkali with an oxygen carrier, a methodology has been developed where alkali salts are added with impregnated charcoal particles. This work studies the effect of K2CO3 and Na2CO3 on the fluidization/agglomeration behavior and reactivity as well as the interaction of a braunite manganese ore oxygen carrier with K and Na in a batch fluidized bed reactor. Charcoal impregnated with K2CO3 (K-charcoal) and charcoal impregnated with Na2CO3 (Na-charcoal) were used as solid fuels in the reduction step of the simulated CLC cycles. CH4 and syngas (50% CO + 50% H2) were periodically used to evaluate the reactivity of braunite before and after solid fuel experiments. In total, more than 50 cycles were performed for both K-charcoal series and Na-charcoal series tests, while some additional cycles with non-impregnated charcoal were conducted and considered as a reference. Partial agglomeration and partial defluidization were found after cycles with K-charcoal and Na-charcoal, and the use of K-charcoal tends to lead to the partial agglomeration/defluidization faster than the use of Na-charcoal. K, Na, Si, and Ca were found at a higher concentration on the surface of the agglomerated particles and can be assumed to be responsible for the partial agglomeration. The partial agglomeration with K-charcoal happened likely as a result of surface melting of the braunite particles, whereas the formation of the low-melting-point Na-Si-Ca system could be responsible for agglomeration in the Na-charcoal experiments. The concentration of K and Na in the braunite bed was found to increase during cycles with the alkali charcoals. In total, the added masses of K and Na were 0.8 and 1.2% of the bed, and around 40 and 80% of added K and Na were found, respectively, in the used oxygen carrier particles. Although partial agglomeration and accumulation were observed in the presence of these alkalis, the reactivity of used braunite was scarcely changed in comparison to the fresh sample.
  •  
6.
  • Andersson, Viktor, 1983, et al. (författare)
  • Alkali desorption from ilmenite oxygen carrier particles used in biomass combustion
  • 2024
  • Ingår i: Fuel. - 0016-2361 .- 1873-7153. ; 359
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxygen-carrying fluidized bed materials are increasingly used in novel technologies for carbon capture and storage, and to improve the efficiency of fuel conversion processes. Potassium- and sodium-containing compounds are released during biomass combustion and may have both negative and positive effects on conversion processes. Ilmenite is an important oxygen carrier material with the ability to capture alkali in the form of titanates. This is a desirable property since it may reduce detrimental alkali effects including fouling, corrosion, and fluidized bed agglomeration. This study investigates the interactions of alkali-containing compounds with ilmenite particles previously used in an industrial scale (115 MWth) oxygen carrier aided combustion system. The ilmenite samples were exposed to temperatures up to 1000 °C under inert and oxidizing conditions while the alkali release kinetics were characterized using online alkali monitoring. Alkali desorption occurs between 630 and 800 °C, which is attributed to loosely bound alkali at or near the surface of the particles. Extensive alkali release is observed above 900 °C and proceeds during extended time periods at 1000 °C. The release above 900 °C is more pronounced under oxidizing conditions and approximately 9.1 and 3.2 wt% of the alkali content is emitted from the ilmenite samples in high and low oxygen activity, respectively. Detailed material analyses using scanning electron microscopy with energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy were conducted before and after temperature treatment, which revealed that the concentrations of potassium, sodium and chlorine decrease at the outermost surface of the ilmenite particles during temperature treatment, and Cl is depleted to a deeper level in oxidizing conditions compared to inert. The implications for ilmenite-ash interactions, oxygen carrier aided combustion and chemical looping systems are discussed.
  •  
7.
  • Andersson, Viktor, 1983, et al. (författare)
  • Alkali interactions with a calcium manganite oxygen carrier used in chemical looping combustion
  • 2022
  • Ingår i: Fuel Processing Technology. - : Elsevier BV. - 0378-3820 .- 1873-7188. ; 227
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemical-Looping Combustion (CLC) of biofuels is a promising technology for cost-efficient CO2 separation and can lead to negative CO2 emissions when combined with carbon capture and storage. A potential challenge in developing CLC technology is the effects of alkali metal-containing compounds released during fuel conversion. This study investigates the interactions between alkali and an oxygen carrier (OC), CaMn0.775Ti0.125Mg0.1O3-δ, to better understand the fate of alkali in CLC. A laboratory-scale fluidized bed reactor is operated at 800–900 °C in oxidizing, reducing and inert atmospheres to mimic CLC conditions. Alkali is fed to the reactor as aerosol KCl particles, and alkali in the exhaust is measured online with a surface ionization detector. The alkali concentration changes with gas environment, temperature, and alkali loading, and the concentration profile has excellent reproducibility over repeated redox cycles. Alkali-OC interactions are dominated by alkali uptake under most conditions, except for a release during OC reduction. Uptake is significant during stable reducing conditions, and is limited under oxidizing conditions. The total uptake during a redox cycle is favored by a high alkali loading, while the influence of temperature is weak. The implications for the understanding of alkali behavior in CLC and further development are discussed.
  •  
8.
  • Andersson, Viktor, 1983, et al. (författare)
  • Alkali-wall interactions in a laboratory-scale reactor for chemical looping combustion studies
  • 2021
  • Ingår i: Fuel Processing Technology. - : Elsevier BV. - 0378-3820 .- 1873-7188. ; 217
  • Tidskriftsartikel (refereegranskat)abstract
    • Alkali metal-containing compounds are readily released during thermal conversion of solid fuels, and may have both detrimental and beneficial effects on chemical looping combustion. Here, we characterize alkali interactions with the inner walls of a laboratory-scale reactor under oxidizing, reducing and inert conditions at temperatures up to 900 °C. KCl aerosol particles are continuously introduced to the stainless steel reactor and the alkali concentration is measured on-line with a surface ionization detector. Aerosol particles evaporate at temperatures above 500 °C and KCl molecules rapidly diffuse to the reactor wall. Up to 92% of the alkali reaching the wall below 700 °C remains adsorbed, while re-evaporation is important at higher temperatures, where up to 74% remains adsorbed. Transient changes in alkali concentration are observed during repeated redox cycles, which are associated with changes in chemical composition of the wall material. Metal oxides on the reactor wall are partially depleted under reducing conditions, which allow for the formation of a new potassium-rich phase that is stable in a reducing atmosphere, but not under inert conditions. The observed wall effects are concluded to be extensive and include major transient effects depending on gas composition, and the implications for laboratory studies and improved experimental methodology are discussed.
  •  
9.
  • Andersson, Viktor, 1983, et al. (författare)
  • Design and first application of a novel laboratory reactor for alkali studies in chemical looping applications
  • 2023
  • Ingår i: Fuel Processing Technology. - 0378-3820. ; 252
  • Tidskriftsartikel (refereegranskat)abstract
    • Alkali compounds are readily released during biomass conversion and their complex interactions with reactor walls and sampling equipment makes detailed investigations challenging. This study evaluates a novel laboratory-scale fluidized bed reactor for chemical looping combustion (CLC) studies. The reactor design is based on detailed consideration of the behavior of alkali-containing molecules and aerosol particles and is guided by computational fluid dynamic simulations. The design allows for interactions between gaseous alkali and a fluidized bed, while minimizing alkali interactions with walls before and after the fluidized bed. The function of the laboratory reactor is demonstrated in experiments using online gas and alkali analysis. Alkali is continuously fed to the reactor as KOH or KCl aerosol with and without a fluidized bed of the oxygen carrier CaMn0.775Ti0.125Mg0.1O3-δ present in inert, reducing and oxidizing conditions at temperatures up to 900 °C. Alkali uptake by the OC is characterized in all conditions, and observed to sensitively depend on gas composition, reactor temperature and type of alkali compound. The experimental setup is concluded to have a significantly improved functionality compared to a previously used reactor, which opens up for detailed studies of interactions between alkali compounds and oxygen carriers used in CLC.
  •  
10.
  • Andersson, Viktor, 1983, et al. (författare)
  • Gaseous alkali interactions with ilmenite, manganese oxide and calcium manganite under chemical looping combustion conditions
  • 2024
  • Ingår i: Fuel Processing Technology. - 0378-3820 .- 1873-7188. ; 254
  • Tidskriftsartikel (refereegranskat)abstract
    • Alkali species present in biomass pose significant challenges in chemical looping combustion (CLC) processes and other thermal conversion applications. The interactions between different alkali species and three common oxygen carrier (OC) materials that are considered to be state of the art in CLC applications have been investigated. A dedicated fluidized bed laboratory reactor was used to study interactions of KCl, NaCl, KOH, NaOH, K2SO4 and Na2SO4 with manganese oxide, calcium manganite and ilmenite. Alkali vapor was generated by injecting alkali salts under reducing, oxidizing and inert conditions at 900 °C. Gaseous species were measured online downstream of the reactor, and the efficiency of alkali uptake was determined under different conditions. The result show significant alkali uptake by all OCs under the studied conditions. Ilmenite shows near complete alkali uptake in reducing conditions, while manganese oxide and calcium manganite exhibited less effective alkali uptake, but have advantages in terms of fuel conversion and oxidizing efficiency. Alkali chlorides, sulfates and hydroxides show distinctly different behavior, with alkali hydroxides being efficiently captured all three investigate OC materials. The findings contribute to a deeper understanding of alkali behavior and offer valuable guidance for the design and optimization of CLC with biomass.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 48
Typ av publikation
tidskriftsartikel (46)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (47)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Leion, Henrik, 1976 (48)
Mattisson, Tobias, 1 ... (22)
Yilmaz, Duygu, 1987 (12)
Hildor, Fredrik, 199 ... (11)
Soleimanisalim, Amir ... (7)
Mei, Daofeng, 1986 (7)
visa fler...
Andersson, Viktor, 1 ... (5)
Pettersson, Jan B. C ... (5)
Kong, Xiangrui (5)
Soleimani Salim, Ami ... (5)
Glarborg, Peter (5)
Wu, Hao (5)
Linderholm, Carl Joh ... (5)
Darwish, Esraa, 1986 (5)
Lyngfelt, Anders, 19 ... (4)
Stanicic, Ivana, 199 ... (4)
Dam-Johansen, Kim (4)
Rydén, Magnus, 1975 (3)
Lidman Olsson, Emil ... (3)
Knutsson, Pavleta, 1 ... (2)
Zevenhoven, Maria (2)
Eliasson Störner, Fe ... (2)
Hupa, Leena (2)
Faust, Robin, 1992 (2)
de Diego, L. F. (1)
Garcia-Labiano, F. (1)
Steenari, Britt-Mari ... (1)
Hellman, Anders, 197 ... (1)
Adanez-Rubio, Inaki (1)
Normann, Fredrik, 19 ... (1)
Seemann, Martin, 197 ... (1)
Pallarès, David, 197 ... (1)
Hedberg, Marcus, 198 ... (1)
Baena-Moreno, Franci ... (1)
Arvidsson, Adam, 199 ... (1)
Attah, Martin (1)
Backman, Rainer (1)
Brorsson, Joakim, 19 ... (1)
Rehnberg, Viktor, 19 ... (1)
Dal Belo Takehara, M ... (1)
Mansouri, Moufida, 1 ... (1)
Brink, Anders (1)
Biswas, Arijit (1)
Hanning, Malin, 1987 (1)
Schmid, Daniel (1)
Karlström, Oskar (1)
Enemark-Rasmussen, K ... (1)
Li, Songgeng (1)
Cheng, Fangqin (1)
Moldenhauer, Patrick ... (1)
visa färre...
Lärosäte
Chalmers tekniska högskola (48)
RISE (7)
Göteborgs universitet (5)
Umeå universitet (1)
Luleå tekniska universitet (1)
Språk
Engelska (48)
Forskningsämne (UKÄ/SCB)
Teknik (46)
Naturvetenskap (23)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy