SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nuzzo S.) srt2:(2020-2024)"

Sökning: WFRF:(Nuzzo S.) > (2020-2024)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lehman, S E, et al. (författare)
  • Biocompliant Composite Au/pHEMA Plasmonic Scaffolds for 3D Cell Culture and Noninvasive Sensing of Cellular Metabolites
  • 2020
  • Ingår i: Advanced Healthcare Materials. - : Wiley-VCH Verlag. - 2192-2640 .- 2192-2659.
  • Tidskriftsartikel (refereegranskat)abstract
    • The field of 3D printing is an area of active research, with a substantial focus given to the design and construction of customized tools for applications in technology. There exists a particular need in these developing areas of opportunity for new multi-functional soft materials that are biologically compatible for the growth and directed culturing of cells. Herein, a composite material consisting of gold nanoparticles with useful plasmonic properties embedded within a highly hydrophilic poly-2-hydroxyethylmethacrylate matrix is described and characterized. This composite material serves dual functions as both host framework scaffold for cell lines such as pre-osteoblasts as well as a plasmonic biosensor for in situ measurements of living cells. The plasmonic properties of this system are characterized as a function of the material properties and related to compositional features of the material through a proposed light-directed mechanism. This chemistry provides a tunable, 3D printable plasmonic composite material of encapsulated gold nanoparticles in a biologically-compliant, acrylate-based hydrogel matrix. Surface-enhanced Raman scattering studies of 3D-microcultures supported by the scaffolds are carried out and the strong influence of perm-selective molecular diffusion in its analytical responses is established. Most notably, specific, largely hydrophilic, cellular metabolites are detected within the supported live cultures. 
  •  
2.
  • Wang, C., et al. (författare)
  • 3D Particle-Free Printing of Biocompatible Conductive Hydrogel Platforms for Neuron Growth and Electrophysiological Recording
  • 2021
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 31:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrically conductive 3D periodic microscaffolds are fabricated using a particle-free direct ink writing approach for use as neuronal growth and electrophysiological recording platforms. A poly (2-hydroxyethyl methacrylate)/pyrrole ink, followed by chemical in situ polymerization of pyrrole, enables hydrogel printing through nozzles as small as 1 µm. These conductive hydrogels can pattern complex 2D and 3D structures and have good biocompatibility with test cell cultures (≈94.5% viability after 7 days). Hydrogel arrays promote extensive neurite outgrowth of cultured Aplysia californica pedal ganglion neurons. This platform allows extracellular electrophysiological recording of steady-state and stimulated electrical neuronal activities. In summation, this 3D conductive ink printing process enables the preparation of biocompatible and micron-sized structures to create customized in vitro electrophysiological recording platforms.
  •  
3.
  •  
4.
  • Reintam Blaser, A., et al. (författare)
  • Incidence, diagnosis, management and outcome of acute mesenteric ischaemia: a prospective, multicentre observational study (AMESI Study)
  • 2024
  • Ingår i: Critical Care. - : BioMed Central (BMC). - 1364-8535 .- 1466-609X. ; 28:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The aim of this multicentre prospective observational study was to identify the incidence, patient characteristics, diagnostic pathway, management and outcome of acute mesenteric ischaemia (AMI). Methods: All adult patients with clinical suspicion of AMI admitted or transferred to 32 participating hospitals from 06.06.2022 to 05.04.2023 were included. Participants who were subsequently shown not to have AMI or had localized intestinal gangrene due to strangulating bowel obstruction had only baseline and outcome data collected. Results: AMI occurred in 0.038% of adult admissions in participating acute care hospitals worldwide. From a total of 705 included patients, 418 patients had confirmed AMI. In 69% AMI was the primary reason for admission, while in 31% AMI occurred after having been admitted with another diagnosis. Median time from onset of symptoms to hospital admission in patients admitted due to AMI was 24 h (interquartile range 9-48h) and time from admission to diagnosis was 6h (1–12 h). Occlusive arterial AMI was diagnosed in 231 (55.3%), venous in 73 (17.5%), non-occlusive (NOMI) in 55 (13.2%), other type in 11 (2.6%) and the subtype could not be classified in 48 (11.5%) patients. Surgery was the initial management in 242 (58%) patients, of which 59 (24.4%) underwent revascularization. Endovascular revascularization alone was carried out in 54 (13%), conservative treatment in 76 (18%) and palliative care in 46 (11%) patients. From patients with occlusive arterial AMI, revascularization was undertaken in 104 (45%), with 40 (38%) of them in one site admitting selected patients. Overall in-hospital and 90-day mortality of AMI was 49% and 53.3%, respectively, and among subtypes was lowest for venous AMI (13.7% and 16.4%) and highest for NOMI (72.7% and 74.5%). There was a high variability between participating sites for most variables studied. Conclusions: The overall incidence of AMI and AMI subtypes varies worldwide, and case ascertainment is challenging. Pre-hospital delay in presentation was greater than delays after arriving at hospital. Surgery without revascularization was the most common management approach. Nearly half of the patients with AMI died during their index hospitalization. Together, these findings suggest a need for greater awareness of AMI, and better guidance in diagnosis and management. Trial registration: NCT05218863 (registered 19.01.2022).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy