SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ortiz A) srt2:(2005-2009)"

Search: WFRF:(Ortiz A) > (2005-2009)

  • Result 1-10 of 20
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aamodt, K., et al. (author)
  • The ALICE experiment at the CERN LHC
  • 2008
  • In: Journal of Instrumentation. - 1748-0221. ; 3:S08002
  • Research review (peer-reviewed)abstract
    • ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries, Its overall dimensions are 16 x 16 x 26 m(3) with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
  •  
2.
  •  
3.
  • Power, M. J., et al. (author)
  • Changes in fire regimes since the Last Glacial Maximum : an assessment based on a global synthesis and analysis of charcoal data
  • 2008
  • In: Climate Dynamics. - : Springer Science and Business Media LLC. - 0930-7575 .- 1432-0894. ; 30:7-8, s. 887-907
  • Journal article (peer-reviewed)abstract
    • Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ∼11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ∼19,000 to ∼17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ∼13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ∼3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load.
  •  
4.
  • Tomasi, C., et al. (author)
  • Aerosols in polar regions : A historical overview based on optical depth and in situ observations
  • 2007
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:D16, s. D16205-
  • Research review (peer-reviewed)abstract
    • Large sets of filtered actinometer, filtered pyrheliometer and Sun photometer measurements have been carried out over the past 30 years by various groups at different Arctic and Antarctic sites and for different time periods. They were examined to estimate ensemble average, long-term trends of the summer background aerosol optical depth AOD(500 nm) in the polar regions ( omitting the data influenced by Arctic haze and volcanic eruptions). The trend for the Arctic was estimated to be between -1.6% and -2.0% per year over 30 years, depending on location. No significant trend was observed for Antarctica. The time patterns of AOD( 500 nm) and angstrom ngstrom's parameters a and beta measured with Sun photometers during the last 20 years at various Arctic and Antarctic sites are also presented. They give a measure of the large variations of these parameters due to El Chichon, Pinatubo, and Cerro Hudson volcanic particles, Arctic haze episodes most frequent in winter and spring, and the transport of Asian dust and boreal smokes to the Arctic region. Evidence is also shown of marked differences between the aerosol optical parameters measured at coastal and high-altitude sites in Antarctica. In situ optical and chemical composition parameters of aerosol particles measured at Arctic and Antarctic sites are also examined to achieve more complete information on the multimodal size distribution shape parameters and their radiative properties. A characterization of aerosol radiative parameters is also defined by plotting the daily mean values of a as a function of AOD( 500 nm), separately for the two polar regions, allowing the identification of different clusters related to fifteen aerosol classes, for which the spectral values of complex refractive index and single scattering albedo were evaluated.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Adler, Ruth E., et al. (author)
  • Sediment record from the western Arctic Ocean with an improved Late Quaternary age resolution : HOTRAX core HLY0503-8JPC, Mendeleev Ridge
  • 2009
  • In: Global and Planetary Change. - : Elsevier BV. - 0921-8181 .- 1872-6364. ; 68:02-jan, s. 18-29
  • Journal article (peer-reviewed)abstract
    • Sediment core HLY0503-8JPC raised by the HOTRAX'05 expedition from the Mendeleev Ridge was analyzed for multiple lithological, paleontological. and stable-isotopic proxies to reconstruct paleoceanographic conditions in the western Arctic Ocean during the Late Quaternary. The core, extensively sampled in the upper 5 m, reveals pronounced changes in sedimentary environments during the ca. 250 kyr interval encompassing Marine Isotopic Stages (MIS) 1 to 7. An estimated average resolution of 500 yr/sample, at least for the last glacial cycle including the last interglacial, provides more detail than seen in other sedimentary records from the western Arctic Ocean. The age control is provided by C-14 and amino acid racemization measurements on planktonic foraminifers and correlations with the stratigraphy developed for the central Lomonosov Ridge and with glacial events at the Eurasian Arctic margin. Cyclic variations in lithology combined with foraminiferal abundance and stable-isotopic composition indicate profound changes in hydrographic and depositional environments between interglacial-type and glacial-type periods apparently reflecting a combination of 100-kyr and precessional time scales. This periodicity is complicated by abrupt iceberg- and/or meltwater-discharge events with variable (Laurentide vs. Eurasian) provenance. The proxy record from the interval identified as the last interglacial (MIS 5e), which may aid in understanding the future state of the Arctic Ocean, indicates low ice conditions and possibly enhanced stratification of the water column.
  •  
9.
  •  
10.
  • Darby, Dennis, et al. (author)
  • The role of currents and sea ice in both slowly deposited central Arctic and rapidly deposited Chukchi-Alaskan margin sediments
  • 2009
  • In: Global and Planetary Change. - : Elsevier BV. - 0921-8181 .- 1872-6364. ; 68:1-2, s. 58-72
  • Journal article (peer-reviewed)abstract
    • A study of three long cores from the outer shelf and continental slope north of Alaska in the Arctic Ocean indicate that localized drift deposits occur here with sedimentation rates of more than 1.5 m/kyr during the Holocene. Currents in this area average about 5–20 cm/s but can reach 100 cm/s and these velocities transport the sediment found in these cores primarily as intermittent suspended load. These high accumulation sediments form levee-like deposits associated with margins of canyons cutting across the shelf and slope. Unlike most textural investigations of Arctic sediment that focus on the coarser ice-rafted detritus (IRD), this paper focuses on the > 95% of the sediment, which is finer than 45 μm. The mean size of this fraction varies between 6 and 15 μm in Holocene sediments from the Chukchi–Alaskan shelf and slope with the higher values closer to shore. Analysis of detailed size distributions of these Holocene deposits are compared to 34 sediment samples collected from sea ice across the Arctic Ocean and to Holocene sediment from central Arctic Ocean cores and indicate that similar textural parameters occur in all of these sediments. Principal components of these size distributions indicate that sea ice is an important link between the shelves and the central Arctic. Factor scores indicate nearly identical components in the clay and fine silt size fractions but very different components in the coarse silt for sea ice sediment and central Arctic ridge sediments compared to shelf and continental slope deposits. Sea ice must contribute to sedimentation in both of these Arctic regions, but bottom currents dominate in the slope region, forming drift deposits.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view