SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Otin R.) srt2:(2010-2014)"

Sökning: WFRF:(Otin R.) > (2010-2014)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
2.
  • Alexandrov, Ludmil B., et al. (författare)
  • Signatures of mutational processes in human cancer
  • 2013
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 500:7463, s. 415-421
  • Tidskriftsartikel (refereegranskat)abstract
    • All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.
  •  
3.
  • Hudson, Thomas J., et al. (författare)
  • International network of cancer genome projects
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 464:7291, s. 993-998
  • Tidskriftsartikel (refereegranskat)abstract
    • The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.
  •  
4.
  • Berndt, Sonja I., et al. (författare)
  • Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia
  • 2013
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:8, s. 868-U202
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have previously identified 13 loci associated with risk of chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL). To identify additional CLL susceptibility loci, we conducted the largest meta-analysis for CLL thus far, including four GWAS with a total of 3,100 individuals with CLL (cases) and 7,667 controls. In the meta-analysis, we identified ten independent associated SNPs in nine new loci at 10q23.31 (ACTA2 or FAS (ACTA2/FAS), P = 1.22 x 10(-14)), 18q21.33 (BCL2, P = 7.76 x 10(-11)), 11p15.5 (C11orf21, P = 2.15 x 10(-10)), 4q25 (LEF1, P = 4.24 x 10(-10)), 2q33.1 (CASP10 or CASP8 (CASP10/CASP8), P = 2.50 x 10(-9)), 9p21.3 (CDKN2B-AS1, P = 1.27 x 10(-8)), 18q21.32 (PMAIP1, P = 2.51 x 10(-8)), 15q15.1 (BMF, P = 2.71 x 10(-10)) and 2p22.2 (QPCT, P = 1.68 x 10(-8)), as well as an independent signal at an established locus (2q13, ACOXL, P = 2.08 x 10(-18)). We also found evidence for two additional promising loci below genome-wide significance at 8q22.3 (ODF1, P = 5.40 x 10(-8)) and 5p15.33 (TERT, P = 1.92 x 10(-7)). Although further studies are required, the proximity of several of these loci to genes involved in apoptosis suggests a plausible underlying biological mechanism.
  •  
5.
  • Warren, Wesley C, et al. (författare)
  • The genome of a songbird
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 464:7289, s. 757-762
  • Tidskriftsartikel (refereegranskat)abstract
    • The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (4)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (5)
Författare/redaktör
Campo, Elias (3)
Caldas, Carlos (2)
Flicek, Paul (2)
Lehrach, Hans (2)
Pontén, Fredrik (1)
Glimelius, Bengt (1)
visa fler...
Smedby, Karin E. (1)
Masala, Giovanna (1)
Riboli, Elio (1)
Wang, Jin (1)
Wang, Mei (1)
Uhlén, Mathias (1)
Nettekoven, Gerd (1)
Bardelli, Alberto (1)
Calvo, Fabien (1)
Strålfors, Peter (1)
Kominami, Eiki (1)
Salvesen, Guy (1)
Adami, Hans Olov (1)
Adam, Iris (1)
Melbye, Mads (1)
Weiderpass, Elisabet ... (1)
Bonaldo, Paolo (1)
Egevad, Lars (1)
Berndt, Sonja I (1)
Chanock, Stephen J (1)
Albanes, Demetrius (1)
Travis, Ruth C (1)
Giles, Graham G (1)
Cannon-Albright, Lis ... (1)
Estivill, Xavier (1)
Guigo, Roderic (1)
Gut, Ivo (1)
Minucci, Saverio (1)
Siebert, Reiner (1)
Stunnenberg, Hendrik ... (1)
Valencia, Alfonso (1)
Ellegren, Hans (1)
Wainwright, Brandon ... (1)
De Milito, Angelo (1)
Agholme, Lotta (1)
Kågedal, Katarina (1)
Severi, Gianluca (1)
Vineis, Paolo (1)
North, Kari E. (1)
Durbeej-Hjalt, Madel ... (1)
Liu, Wei (1)
Trichopoulos, Dimitr ... (1)
Boffetta, Paolo (1)
Clarke, Robert (1)
visa färre...
Lärosäte
Uppsala universitet (3)
Lunds universitet (3)
Karolinska Institutet (3)
Göteborgs universitet (1)
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (3)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy