SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Overland S) srt2:(2019)"

Sökning: WFRF:(Overland S) > (2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Knudsen, A. K., et al. (författare)
  • Life expectancy and disease burden in the Nordic countries: results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2017
  • 2019
  • Ingår i: Lancet Public Health. - : Elsevier BV. - 2468-2667. ; 4:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The Nordic countries have commonalities in gender equality, economy, welfare, and health care, but differ in culture and lifestyle, which might create country-wise health differences. This study compared life expectancy, disease burden, and risk factors in the Nordic region. Methods Life expectancy in years and age-standardised rates of overall, cause-specific, and risk factor-specific estimates of disability-adjusted life-years (DALYs) were analysed in the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017. Data were extracted for Denmark, Finland, Iceland, Norway, and Sweden (ie, the Nordic countries), and Greenland, an autonomous area of Denmark. Estimates were compared with global, high-income region, and Nordic regional estimates, including Greenland. Findings All Nordic countries exceeded the global life expectancy; in 2017, the highest life expectancy was in Iceland among females (85.9 years [95% uncertainty interval [UI] 85.5-86.4] vs 75.6 years [75.3-75.9] globally) and Sweden among males (80.8 years [80.2-81.4] vs 70.5 years [70.1-70.8] globally). Females (82.7 years [81.9-83.4]) and males (78.8 years [78.1-79.5]) in Denmark and males in Finland (78.6 years [77.8-79.2]) had lower life expectancy than in the other Nordic countries. The lowest life expectancy in the Nordic region was in Greenland (females 77.2 years [76.2-78.0], males 70.8 years [70.3-71.4]). Overall disease burden was lower in the Nordic countries than globally, with the lowest age-standardised DALY rates among Swedish males (18 555.7 DALYs [95% UI 15 968.6-21 426.8] per 100 000 population vs 35 834.3 DALYs [33 218.2-38 740.7] globally) and Icelandic females (16 074.1 DALYs [13 216.4-19 240.8] vs 29 934.6 DALYs [26 981.9-33 211.2] globally). Greenland had substantially higher DALY rates (26 666.6 DALYs [23 478.4-30 218.8] among females, 33 101.3 DALYs [30 182.3-36 218.6] among males) than the Nordic countries. Country variation was primarily due to differences in causes that largely contributed to DALYs through mortality, such as ischaemic heart disease. These causes dominated male disease burden, whereas non-fatal causes such as low back pain were important for female disease burden. Smoking and metabolic risk factors were high-ranking risk factors across all countries. DALYs attributable to alcohol use and smoking were particularly high among the Danes, as was alcohol use among Finnish males. Interpretation Risk factor differences might drive differences in life expectancy and disease burden that merit attention also in high-income settings such as the Nordic countries. Special attention should be given to the high disease burden in Greenland. Copyright (C) 2019 The Author(s). Published by Elsevier Ltd.
  •  
2.
  •  
3.
  • Box, Jason E., et al. (författare)
  • Key indicators of Arctic climate change: 1971–2017
  • 2019
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 14:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Key observational indicators of climate change in the Arctic, most spanning a 47 year period (1971–2017) demonstrate fundamental changes among nine key elements of the Arctic system. We find that, coherent with increasing air temperature, there is an intensification of the hydrological cycle, evident from increases in humidity, precipitation, river discharge, glacier equilibrium line altitude and land ice wastage. Downward trends continue in sea ice thickness (and extent) and spring snow cover extent and duration, while near-surface permafrost continues to warm. Several of the climate indicators exhibit a significant statistical correlation with air temperature or precipitation, reinforcing the notion that increasing air temperatures and precipitation are drivers of major changes in various components of the Arctic system. To progress beyond a presentation of the Arctic physical climate changes, we find a correspondence between air temperature and biophysical indicators such as tundra biomass and identify numerous biophysical disruptions with cascading effects throughout the trophic levels. These include: increased delivery of organic matter and nutrients to Arctic near‐coastal zones; condensed flowering and pollination plant species periods; timing mismatch between plant flowering and pollinators; increased plant vulnerability to insect disturbance; increased shrub biomass; increased ignition of wildfires; increased growing season CO2 uptake, with counterbalancing increases in shoulder season and winter CO2 emissions; increased carbon cycling, regulated by local hydrology and permafrost thaw; conversion between terrestrial and aquatic ecosystems; and shifting animal distribution and demographics. The Arctic biophysical system is now clearly trending away from its 20th Century state and into an unprecedented state, with implications not only within but beyond the Arctic. The indicator time series of this study are freely downloadable at AMAP.no.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy