SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pedroni P) srt2:(2020-2021)"

Sökning: WFRF:(Pedroni P) > (2020-2021)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alef, S., et al. (författare)
  • The BGOOD experimental setup at ELSA
  • 2020
  • Ingår i: European Physical Journal A. - : Springer Science and Business Media LLC. - 1434-6001 .- 1434-601X. ; 56:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The BGOOD experiment at the ELSA facility in Bonn has been commissioned within the framework of an international collaboration. The experiment pursues a systematic investigation of non-strange and strange meson photoproduction, in particular t-channel processes at low momentum transfer. The setup uniquely combines a central almost 4 π acceptance BGO crystal calorimeter with a large aperture forward magnetic spectrometer providing excellent detection of both neutral and charged particles, complementary to other setups such as Crystal Barrel, Crystal Ball, LEPS and CLAS.
  •  
2.
  • Wiessner, M., et al. (författare)
  • Biallelic variants in HPDL cause pure and complicated hereditary spastic paraplegia
  • 2021
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 144:5, s. 1422-1434
  • Tidskriftsartikel (refereegranskat)abstract
    • Human 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) is a putative iron-containing non-heme oxygenase of unknown specificity and biological significance. We report 25 families containing 34 individuals with neurological disease associated with biallelic HPDL variants. Phenotypes ranged from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spasticity and global developmental delays, sometimes complicated by episodes of neurological and respiratory decompensation. Variants included bona fide pathogenic truncating changes, although most were missense substitutions. Functionality of variants could not be determined directly as the enzymatic specificity of HPDL is unknown; however, when HPDL missense substitutions were introduced into 4-hydroxyphenylpyruvate dioxygenase (HPPD, an HPDL orthologue), they impaired the ability of HPPD to convert 4-hydroxyphenylpyruvate into homogentisate. Moreover, three additional sets of experiments provided evidence for a role of HPDL in the nervous system and further supported its link to neurological disease: (i) HPDL was expressed in the nervous system and expression increased during neural differentiation; (ii) knockdown of zebrafish hpdl led to abnormal motor behaviour, replicating aspects of the human disease; and (iii) HPDL localized to mitochondria, consistent with mitochondrial disease that is often associated with neurological manifestations. Our findings suggest that biallelic HPDL variants cause a syndrome varying from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spastic tetraplegia associated with global developmental delays. © 2021 The Author(s).
  •  
3.
  • Lu, D., et al. (författare)
  • Nanojet Trapping of a Single Sub-10 nm Upconverting Nanoparticle in the Full Liquid Water Temperature Range
  • 2021
  • Ingår i: Small. - : Wiley-VCH Verlag. - 1613-6810 .- 1613-6829. ; 17:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Upconverting nanoparticles (UCNPs) have been used as optical probes in a great variety of scenarios ranging from cells to animal models. When optically trapped, a single UCNP can be remotely manipulated making possible, for instance, thermal scanning in the surroundings of a living cell. When conventional optics is used, the stability of an optically trapped UCNP is very limited. Its reduced size leads to optical potentials comparable to thermal energy, and up to now, stable optical trapping of a UCNP has been demonstrated only close to room temperature. This fact limits their use above room temperature, for instance, the use to investigate protein denaturalization that occurs in the 40–50 °C range. In this work, stable optical trapping of a single UCNP in the 20–90 °C range has been demonstrated by using a photonic nanojet. The use of an optically trapped microsphere makes it possible to overcome the diffraction limit producing another optical trap of smaller size and enhanced strength. This simple strategy leads not only to an improvement in the thermal stability of the optical trap but also to an enhancement of the emission intensity generated by the optically trapped UCNP. 
  •  
4.
  • Tolias, Panagiotis, 1984-, et al. (författare)
  • Diffusion bonding effects on the adhesion of tungsten dust on tungsten surfaces
  • 2020
  • Ingår i: Nuclear Materials and Energy. - : Elsevier BV. - 2352-1791. ; 24
  • Tidskriftsartikel (refereegranskat)abstract
    • High temperature excursions have the potential to strongly enhance the room temperature adhesion of tokamak dust. Planar tungsten substrates containing adhered nearly monodisperse spherical tungsten dust have been exposed to linear plasmas and vacuum furnaces. Prolonged thermal treatments of varying peak temperature and constant duration were followed by room temperature adhesion measurements with the electrostatic detachment method. Adhesive forces have been observed to strongly depend on the thermal pre-history, greatly increasing above a threshold temperature. Adhesive forces have been measured up to an order of magnitude larger than those of untreated samples. This enhancement has been attributed to atomic diffusion that slowly eliminates the omnipresent nanometer-scale surface roughness, ultimately switching the dominant interaction from long-range weak van der Waals forces to short-range strong metallic bonding.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy