SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pramstaller Peter P) srt2:(2020-2023)"

Search: WFRF:(Pramstaller Peter P) > (2020-2023)

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kanoni, Stavroula, et al. (author)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • In: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Journal article (peer-reviewed)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
2.
  • Ntalla, Ioanna, et al. (author)
  • Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.
  •  
3.
  • Young, William J., et al. (author)
  • Genetic analyses of the electrocardiographic QT interval and its components identify additional loci and pathways
  • 2022
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 13
  • Journal article (peer-reviewed)abstract
    • The QT interval is a heritable electrocardiographic measure associated with arrhythmia risk when prolonged. Here, the authors used a series of genetic analyses to identify genetic loci, pathways, therapeutic targets, and relationships with cardiovascular disease. The QT interval is an electrocardiographic measure representing the sum of ventricular depolarization and repolarization, estimated by QRS duration and JT interval, respectively. QT interval abnormalities are associated with potentially fatal ventricular arrhythmia. Using genome-wide multi-ancestry analyses (>250,000 individuals) we identify 177, 156 and 121 independent loci for QT, JT and QRS, respectively, including a male-specific X-chromosome locus. Using gene-based rare-variant methods, we identify associations with Mendelian disease genes. Enrichments are observed in established pathways for QT and JT, and previously unreported genes indicated in insulin-receptor signalling and cardiac energy metabolism. In contrast for QRS, connective tissue components and processes for cell growth and extracellular matrix interactions are significantly enriched. We demonstrate polygenic risk score associations with atrial fibrillation, conduction disease and sudden cardiac death. Prioritization of druggable genes highlight potential therapeutic targets for arrhythmia. Together, these results substantially advance our understanding of the genetic architecture of ventricular depolarization and repolarization.
  •  
4.
  • Lagou, Vasiliki, et al. (author)
  • Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability
  • 2021
  • In: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.
  •  
5.
  • Biasiotto, Roberta, et al. (author)
  • The dynamic consent of the Cooperative Health Research in South Tyrol (CHRIS) study : broad aim within specific oversight and communication
  • 2021
  • In: BIOLAW JOURNAL-RIVISTA DI BIODIRITTO. - : UNIV TRENTO, FAC LAW. - 2284-4503. ; :1, s. 277-287
  • Journal article (peer-reviewed)abstract
    • In biobanking and genomics research, data and samples are stored for long time and used in further studies, which may not be sufficiently specified or foreseen at the time of the initial consent. The dynamic consent of the CHRIS study integrates broad research aims, specific oversight and governance mechanisms, and continuous communication with participants, and allows nuanced choices to be changed over time. With this paper, we describe the CHRIS dynamic consent, and illustrate, by discussing data sharing and ongoing consent in the CHRIS study, how dynamic consent can actualize an informed consent model that is suitable for biobanking and genomic research.
  •  
6.
  • Emmert, David B., et al. (author)
  • Genetic and Metabolic Determinants of Atrial Fibrillation in a General Population Sample : The CHRIS Study
  • 2021
  • In: Biomolecules. - : MDPI. - 2218-273X. ; 11:11
  • Journal article (peer-reviewed)abstract
    • Atrial fibrillation (AF) is a supraventricular arrhythmia deriving from uncoordinated electrical activation with considerable associated morbidity and mortality. To expand the limited understanding of AF biological mechanisms, we performed two screenings, investigating the genetic and metabolic determinants of AF in the Cooperative Health Research in South Tyrol study. We found 110 AF cases out of 10,509 general population individuals. A genome-wide association scan (GWAS) identified two novel loci (p-value < 5 x 10(-8)) around SNPs rs745582874, next to gene PBX1, and rs768476991, within gene PCCA, with genotype calling confirmed by Sanger sequencing. Risk alleles at both SNPs were enriched in a family detected through familial aggregation analysis of the phenotype, and both rare alleles co-segregated with AF. The metabolic screening of 175 metabolites, in a subset of individuals, revealed a 41% lower concentration of lysophosphatidylcholine lysoPC a C20:3 in AF cases compared to controls (p-adj = 0.005). The genetic findings, combined with previous evidence, indicate that the two identified GWAS loci may be considered novel genetic rare determinants for AF. Considering additionally the association of lysoPC a C20:3 with AF by metabolic screening, our results demonstrate the valuable contribution of the combined genomic and metabolomic approach in studying AF in large-scale population studies.
  •  
7.
  • Liu, Jun, et al. (author)
  • A multi-omics study of circulating phospholipid markers of blood pressure
  • 2022
  • In: Scientific Reports. - : NATURE PORTFOLIO. - 2045-2322. ; 12:1
  • Journal article (peer-reviewed)abstract
    • High-throughput techniques allow us to measure a wide-range of phospholipids which can provide insight into the mechanisms of hypertension. We aimed to conduct an in-depth multi-omics study of various phospholipids with systolic blood pressure (SBP) and diastolic blood pressure (DBP). The associations of blood pressure and 151 plasma phospholipids measured by electrospray ionization tandem mass spectrometry were performed by linear regression in five European cohorts (n = 2786 in discovery and n = 1185 in replication). We further explored the blood pressure-related phospholipids in Erasmus Rucphen Family (ERF) study by associating them with multiple cardiometabolic traits (linear regression) and predicting incident hypertension (Cox regression). Mendelian Randomization (MR) and phenome-wide association study (Phewas) were also explored to further investigate these association results. We identified six phosphatidylethanolamines (PE 38:3, PE 38:4, PE 38:6, PE 40:4, PE 40:5 and PE 40:6) and two phosphatidylcholines (PC 32:1 and PC 40:5) which together predicted incident hypertension with an area under the ROC curve (AUC) of 0.61. The identified eight phospholipids are strongly associated with triglycerides, obesity related traits (e.g. waist, waist-hip ratio, total fat percentage, body mass index, lipid-lowering medication, and leptin), diabetes related traits (e.g. glucose, insulin resistance and insulin) and prevalent type 2 diabetes. The genetic determinants of these phospholipids also associated with many lipoproteins, heart rate, pulse rate and blood cell counts. No significant association was identified by bi-directional MR approach. We identified eight blood pressure-related circulating phospholipids that have a predictive value for incident hypertension. Our cross-omics analyses show that phospholipid metabolites in the circulation may yield insight into blood pressure regulation and raise a number of testable hypothesis for future research.
  •  
8.
  • Mascalzoni, Deborah, 1973-, et al. (author)
  • Balancing scientific interests and the rights of participants in designing a recall by genotype study
  • 2021
  • In: European Journal of Human Genetics. - : Springer Nature. - 1018-4813 .- 1476-5438. ; 29:7, s. 1146-1157
  • Journal article (peer-reviewed)abstract
    • Recall by genotype (RbG) studies aim to better understand the phenotypes that correspond to genetic variants of interest, by recruiting carriers of such variants for further phenotyping. RbG approaches pose major ethical and legal challenges related to the disclosure of possibly unwanted genetic information. The Cooperative Health Research in South Tyrol (CHRIS) study is a longitudinal cohort study based in South Tyrol, Italy. Demand has grown for CHRIS study participants to be enrolled in RbG studies, thus making the design of a suitable ethical framework a pressing need. We here report upon the design of a pilot RbG study conducted with CHRIS study participants. By reviewing the literature and by consulting relevant stakeholders (CHRIS participants, clinical geneticists, ethics board, GPs), we identified key ethical issues in RbG approaches (e.g. complexity of the context, communication of genetic results, measures to further protect participants). The design of the pilot was based on a feasibility assessment, the selection of a suitable test case within the ProtectMove Research Unit on reduced penetrance of hereditary movement disorders, and the development of appropriate recruitment and communication strategies. An empirical study was embedded in the pilot study with the aim of understanding participants' views on RbG. Our experience with the pilot study in CHRIS allowed us to contribute to the development of best practices and policies for RbG studies by drawing recommendations: addressing the possibility of RbG in the original consent, implementing tailored communication strategies, engaging stakeholders, designing embedded empirical studies, and sharing research experiences and methodology.
  •  
9.
  • Mascalzoni, Deborah, 1973-, et al. (author)
  • Participant perspective on the recall-by-genotype research approach : a mixed-method embedded study with participants of the CHRIS study.
  • 2023
  • In: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438.
  • Journal article (peer-reviewed)abstract
    • Recall-by-genotype (RbG) research recruits participants previously involved in genetic research based on their genotype. RbG enables the further study of a particular variant of interest, but in recalling participants, it risks disclosing potentially unwanted or distressing genetic information. Any RbG strategy must therefore be done in a manner that addresses the potential ethical and social issues. As part of an RbG pilot on the penetrance of Parkinson's disease variants, we conducted an empirical mixed-method study with 51 participants of the Cooperative Health Research in South Tyrol (CHRIS) study to understand participant views on RbG research approach. Participants were disclosed the disease under investigation but not the individual variant carrier status. Results showed that participants filtered the information received through personal experience and enacted mechanisms to address the concerns raised by invitation by resorting to personal resources and the support provided by experts. While the non-disclosure of the Parkin variant carrier status was deemed acceptable, disclosing the disease under study was important for participants. Participant preferences for disclosure of the disease under investigation and the carrier status varied according to how the knowledge of individual carrier status was perceived to impact the participant's life. This study provided insights into participant response to the RbG research approach, which are relevant for RbG policy development. A suitable communication strategy and granular options addressing preferences for invitation in the original informed consent are critical for an ethically informed RbG policy.
  •  
10.
  • Melotti, Roberto, et al. (author)
  • Prevalence and determinants of serum antibodies to SARS-CoV-2 in the general population of the Gardena valley
  • 2021
  • In: Epidemiology and Infection. - : Cambridge University Press. - 0950-2688 .- 1469-4409. ; 149
  • Journal article (peer-reviewed)abstract
    • Estimating the spread of SARS-CoV-2 infection in communities is critical. We surveyed 2244 stratified random sample community members of the Gardena valley, a winter touristic area, amidst the first expansion phase of the COVID-19 pandemic in Europe. We measured agreement between Diasorin and Abbott serum bioassay outputs and the Abbott optimal discriminant threshold of serum neutralisation titres with recursive receiver operating characteristic curve. We analytically adjusted serum antibody tests for unbiased seroprevalence estimate and analysed the determinants of infection with non-response weighted multiple logistic regression. SARS-CoV-2 seroprevalence was 26.9% (95% CI 25.2-28.6) by June 2020. The bioassays had a modest agreement with each other. At a lower threshold than the manufacturer's recommended level, the Abbott assay reflected greater discrimination of serum neutralisation capacity. Seropositivity was associated with place and economic activity, not with sex or age. Symptoms like fever and weakness were age-dependent. SARS-CoV-2 mitigation strategies should account for context in high prevalence areas.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view