SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Proitsi P) srt2:(2020-2023)"

Sökning: WFRF:(Proitsi P) > (2020-2023)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wightman, D. P., et al. (författare)
  • A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease
  • 2021
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 53:9, s. 1276-1282
  • Tidskriftsartikel (refereegranskat)abstract
    • Late-onset Alzheimer’s disease is a prevalent age-related polygenic disease that accounts for 50–70% of dementia cases. Currently, only a fraction of the genetic variants underlying Alzheimer’s disease have been identified. Here we show that increased sample sizes allowed identification of seven previously unidentified genetic loci contributing to Alzheimer’s disease. This study highlights microglia, immune cells and protein catabolism as relevant to late-onset Alzheimer’s disease, while identifying and prioritizing previously unidentified genes of potential interest. We anticipate that these results can be included in larger meta-analyses of Alzheimer’s disease to identify further genetic variants that contribute to Alzheimer’s pathology.
  •  
2.
  • Leffa, D. T., et al. (författare)
  • Genetic risk for attention-deficit/hyperactivity disorder predicts cognitive decline and development of Alzheimer's disease pathophysiology in cognitively unimpaired older adults
  • 2023
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 28:3, s. 1248-1255
  • Tidskriftsartikel (refereegranskat)abstract
    • Attention-deficit/hyperactivity disorder (ADHD) persists in older age and is postulated as a risk factor for cognitive impairment and Alzheimer's Disease (AD). However, these findings rely primarily on electronic health records and can present biased estimates of disease prevalence. An obstacle to investigating age-related cognitive decline in ADHD is the absence of large-scale studies following patients with ADHD into older age. Alternatively, this study aimed to determine whether genetic liability for ADHD, as measured by a well-validated ADHD polygenic risk score (ADHD-PRS), is associated with cognitive decline and the development of AD pathophysiology in cognitively unimpaired (CU) older adults. We calculated a weighted ADHD-PRS in 212 CU individuals without a clinical diagnosis of ADHD (55-90 years). These individuals had baseline amyloid-beta (A beta) positron emission tomography, longitudinal cerebrospinal fluid (CSF) phosphorylated tau at threonine 181 (p-tau(181)), magnetic resonance imaging, and cognitive assessments for up to 6 years. Linear mixed-effects models were used to test the association of ADHD-PRS with cognition and AD biomarkers. Higher ADHD-PRS was associated with greater cognitive decline over 6 years. The combined effect between high ADHD-PRS and brain A beta deposition on cognitive deterioration was more significant than each individually. Additionally, higher ADHD-PRS was associated with increased CSF p-tau(181) levels and frontoparietal atrophy in CU A beta-positive individuals. Our results suggest that genetic liability for ADHD is associated with cognitive deterioration and the development of AD pathophysiology. Findings were mostly observed in A beta-positive individuals, suggesting that the genetic liability for ADHD increases susceptibility to the harmful effects of A beta pathology.
  •  
3.
  • Shi, L., et al. (författare)
  • Multiomics profiling of human plasma and cerebrospinal fluid reveals ATN-derived networks and highlights causal links in Alzheimer's disease
  • 2023
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 19:8, s. 3359-3364
  • Tidskriftsartikel (refereegranskat)abstract
    • IntroductionThis study employed an integrative system and causal inference approach to explore molecular signatures in blood and CSF, the amyloid/tau/neurodegeneration [AT(N)] framework, mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD), and genetic risk for AD. MethodsUsing the European Medical Information Framework (EMIF)-AD cohort, we measured 696 proteins in cerebrospinal fluid (n = 371), 4001 proteins in plasma (n = 972), 611 metabolites in plasma (n = 696), and genotyped whole-blood (7,778,465 autosomal single nucleotide epolymorphisms, n = 936). We investigated associations: molecular modules to AT(N), module hubs with AD Polygenic Risk scores and APOE4 genotypes, molecular hubs to MCI conversion and probed for causality with AD using Mendelian randomization (MR). ResultsAT(N) framework associated with protein and lipid hubs. In plasma, Proprotein Convertase Subtilisin/Kexin Type 7 showed evidence for causal associations with AD. AD was causally associated with Reticulocalbin 2 and sphingomyelins, an association driven by the APOE isoform. DiscussionThis study reveals multi-omics networks associated with AT(N) and causal AD molecular candidates.
  •  
4.
  • Kurbatova, N., et al. (författare)
  • Urinary metabolic phenotyping for Alzheimer's disease
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Finding early disease markers using non-invasive and widely available methods is essential to develop a successful therapy for Alzheimer's Disease. Few studies to date have examined urine, the most readily available biofluid. Here we report the largest study to date using comprehensive metabolic phenotyping platforms (NMR spectroscopy and UHPLC-MS) to probe the urinary metabolome in-depth in people with Alzheimer's Disease and Mild Cognitive Impairment. Feature reduction was performed using metabolomic Quantitative Trait Loci, resulting in the list of metabolites associated with the genetic variants. This approach helps accuracy in identification of disease states and provides a route to a plausible mechanistic link to pathological processes. Using these mQTLs we built a Random Forests model, which not only correctly discriminates between people with Alzheimer's Disease and age-matched controls, but also between individuals with Mild Cognitive Impairment who were later diagnosed with Alzheimer's Disease and those who were not. Further annotation of top-ranking metabolic features nominated by the trained model revealed the involvement of cholesterol-derived metabolites and small-molecules that were linked to Alzheimer's pathology in previous studies.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy