SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rensmo Håkan) srt2:(2015-2019)"

Sökning: WFRF:(Rensmo Håkan) > (2015-2019)

  • Resultat 1-10 av 70
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdi-Jalebi, Mojtaba, et al. (författare)
  • Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations
  • 2018
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 12:7, s. 7301-7311
  • Tidskriftsartikel (refereegranskat)abstract
    • We report significant improvements in the optoelectronic properties of lead halide perovskites with the addition of monovalent ions with ionic radii close to Pb2+. We investigate the chemical distribution and electronic structure of solution processed CH3NH3PbI3 perovskite structures containing Na+, Cu+, and Ag+, which are lower valence metal ions than Pb2+ but have similar ionic radii. Synchrotron X-ray diffraction reveals a pronounced shift in the main perovskite peaks for the monovalent cation-based films, suggesting incorporation of these cations into the perovskite lattice as well as a preferential crystal growth in Ag+ containing perovskite structures. Furthermore, the synchrotron X-ray photoelectron measurements show a significant change in the valence band position for Cu- and Ag-doped films, although the perovskite bandgap remains the same, indicating a shift in the Fermi level position toward the middle of the bandgap. Such a shift infers that incorporation of these monovalent cations dedope the n-type perovskite films when formed without added cations. This dedoping effect leads to cleaner bandgaps as reflected by the lower energetic disorder in the monovalent cation-doped perovskite thin films as compared to pristine films. We also find that in contrast to Ag+ and Cu+, Na+ locates mainly at the grain boundaries and surfaces. Our theoretical calculations confirm the observed shifts in X-ray diffraction peaks and Fermi level as well as absence of intrabandgap states upon energetically favorable doping of perovskite lattice by the monovalent cations. We also model a significant change in the local structure, chemical bonding of metal-halide, and the electronic structure in the doped perovskites. In summary, our work highlights the local chemistry and influence of monovalent cation dopants on crystallization and the electronic structure in the doped perovskite thin films.
  •  
2.
  • Abdi-Jalebi, Mojtaba, et al. (författare)
  • Maximizing and stabilizing luminescence from halide perovskites with potassium passivation
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 555, s. 497-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability2 (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.
  •  
3.
  • Bertrand, Philippe, et al. (författare)
  • Passivation Layer and Cathodic Redox Reactions in Sodium-Ion Batteries Probed by HAXPES  
  • 2017
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • In this presentation, we will present a recent example on electrode/electrolyte interfaces of materials for energy storage devices using hard X-rays photoelectron spectroscopy (HAXPES). A nondestructive analysis was made through the electrode/electrolyte interface of the first electrochemical cycle to ensure access to information not only on the active material, but also on the passivation layer formed at the electrode surface and referred to as the solid permeable interface (SPI). [1] While electrode/electrolyte study has been performed widely on Li-ion battery, not so much attention as been addressed to the Na-ion technology so far. We will focus in this presentation to NaxCo2/3Mn2/9Ni1/9O2, a novel intercalation material that could be be used as cathode in Na-ion batteries. [2] During a typical charge/discharge cycle (i.e. extraction/insertion of Na+ ions), the oxidation state of the various transition metals in the compound changes in a reversible way. A step by step analysis of the first electrochemical cycle was carried out by HAXPES providing unique information on the oxidation state of Ni, Co and Mn as well as a very interesting insight into the passivation layer present at the surface of the electrode, which results from the degradation of the electrolyte components upon reaction. This investigation shows the role of the SPI and the complexity of the redox reactions. [3]  [1] B. Philippe, M. Hahlin, K. Edström, T. Gustafsson, H. Siegbahn, H. Rensmo, J. Electrochem. Soc, 2016, 163, A178-A191[2] S. Doubaji, M. Valvo, I. Saadoune, M. Dahbi, K.Edström, J. Power Sources, 2014, 266, 275-281[3] S. Doubaji, B. Philippe, I. Saadoune, M. Gorgoi, T. Gustafsson, A. Solhy, M. Valvo, H. Rensmo, K. Edström, ChemSusChem, 2016, 9, 97-108
  •  
4.
  • Cappel, Ute B., et al. (författare)
  • Electronic Structure Characterization of Cross-Linked Sulfur Polymers
  • 2018
  • Ingår i: ChemPhysChem. - : WILEY-V C H VERLAG GMBH. - 1439-4235 .- 1439-7641. ; 19:9, s. 1041-1047
  • Tidskriftsartikel (refereegranskat)abstract
    • Cross-linked polymers of elemental sulfur are of potential interest for electronic applications as they enable facile thin-film processing of an abundant and inexpensive starting material. Here, we characterize the electronic structure of a cross-linked sulfur/diisopropenyl benzene (DIB) polymer by a combination of soft and hard X-ray photoelectron spectroscopy (SOXPES and HAXPES). Two different approaches for enhancing the conductivity of the polymer are compared: the addition of selenium in the polymer synthesis and the addition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) during film preparation. For the former, we observe the incorporation of Se into the polymer structure resulting in a changed valence-band structure. For the latter, a Fermi level shift in agreement with p-type doping of the polymer is observed and also the formation of a surface layer consisting mostly of TFSI anions.
  •  
5.
  • Cappel, Ute B, et al. (författare)
  • Electronic structure dynamics in a low bandgap polymer studied by time-resolved photoelectron spectroscopy.
  • 2016
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 18:31, s. 21921-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Means to measure the temporal evolution following a photo-excitation in conjugated polymers are a key for the understanding and optimization of their function in applications such as organic solar cells. In this paper we study the electronic structure dynamics by direct pump-probe measurements of the excited electrons in such materials. Specifically, we carried out a time-resolved photoelectron spectroscopy (TRPES) study of the polymer PCPDTBT by combining an extreme ultraviolet (XUV) high harmonic generation source with a time-of-flight spectrometer. After excitation to either the 1st excited state or to a higher excited state, we follow how the electronic structure develops and relaxes on the electron binding energy scale. Specifically, we follow a less than 50 fs relaxation of the higher exited state and a 10 times slower relaxation of the 1st excited state. We corroborate the results using DFT calculations. Our study demonstrates the power of TRPES for studying photo-excited electron energetics and dynamics of solar cell materials.
  •  
6.
  • Cappel, Ute B, et al. (författare)
  • Partially Reversible Photoinduced Chemical Changes in a Mixed-Ion Perovskite Material for Solar Cells.
  • 2017
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 9:40, s. 34970-34978
  • Tidskriftsartikel (refereegranskat)abstract
    • ) with the element specificity and chemical sensitivity of core-level photoelectron spectroscopy. By carrying out measurements at a synchrotron beamline optimized for low X-ray fluxes, we are able to avoid sample changes due to X-ray illumination and are therefore able to monitor what sample changes are induced by visible illumination only. We find that laser illumination causes partially reversible chemistry in the surface region, including enrichment of bromide at the surface, which could be related to a phase separation into bromide- and iodide-rich phases. We also observe a partially reversible formation of metallic lead in the perovskite structure. These processes occur on the time scale of minutes during illumination. The presented methodology has a large potential for understanding light-induced chemistry in photoactive materials and could specifically be extended to systematically study the impact of morphology and composition on the photostability of metal halide perovskites.
  •  
7.
  • Chernysheva, Ekaterina, et al. (författare)
  • Band alignment at Ag/ZnO(0001) interfaces : A combined soft and hard x-ray photoemission study
  • 2018
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 97:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Band alignment at the interface between evaporated silver films and Zn- or O-terminated polar orientations of ZnO is explored by combining soft and hard x-ray photoemissions on native and hydrogenated surfaces. Ultraviolet photoemission spectroscopy (UPS) is used to track variations of work function, band bending, ionization energy, and Schottky barrier during silver deposition. The absolute values of band bending and the bulk position of the Fermi level are determined on continuous silver films by hard x-ray photoemission spectroscopy (HAXPES) through a dedicated modeling of core levels. Hydrogenation leads to the formation of similar to 0.3 monolayer of donorlike hydroxyl groups on both ZnO-O and ZnO-Zn surfaces and to the release of metallic zinc on ZnO-Zn. However, no transition to an accumulation layer is observed. On bare surfaces, silver adsorption is cationic on ZnO(000 (1) over bar)-O [anionic on ZnO(0001)-Zn] at the earliest stages of growth as expected from polarity healing before adsorbing as a neutral species. UPS and HAXPES data appear quite consistent. The two surfaces undergo rather similar band bendings for all types of preparation. The downward band bending of V-bb,(ZnO-O) = -0.4 eV and V-bb,(ZnO-Zn) = -0.6 eV found for the bare surfaces is reinforced upon hydrogenation (V-bb,(ZnO-O+H) = -1.1 eV, V-bb,(ZnO-Zn+H) = -1.2 eV). At the interface with Ag, a unique value of band bending of -0.75 eV is observed. While exposure to atomic hydrogen modulates strongly the energetic positions of the surface levels, a similar Schottky barrier of 0.5-0.7 eV is found for thick silver films on the two surfaces.
  •  
8.
  • D'Amario, Luca, et al. (författare)
  • Chemical and Physical Reduction of High Valence Ni States in Mesoporous NiO Film for Solar Cell Application
  • 2017
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 9:39, s. 33470-33477
  • Tidskriftsartikel (refereegranskat)abstract
    • The most common material for dye-sensitized photocathodes is mesoporous NiO. We transformed the usual brownish NiO to be more transparent by reducing high valence Ni impurities. Two pretreatment methods have been used: chemical reduction by NaBH4 and thermal reduction by heating. The power conversion efficiency of the cell was increased by 33% through chemical treatment, and an increase in open-circuit voltage from 105 to 225 mV was obtained upon heat treatment. By optical spectroelectrochemistry, we could identify two species with characteristically different spectra assigned to Ni3+ and Ni4+. We suggest that the reduction of surface Ni3+ and Ni (4+) to Ni (2+) decreases the recombination reaction between holes on the NiO surface with the electrolyte. It also keeps the dye firmly on the surface, building a barrier for electrolyte recombination. This causes an increase in open-circuit photovoltage for the treated film.
  •  
9.
  • Daniel, Quentin, et al. (författare)
  • Re-Investigation of Cobalt Porphyrin for Electrochemical Water Oxidation on FTO Surface : Formation of CoOx as Active Species
  • 2017
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435 .- 2155-5435. ; 7:2, s. 1143-1149
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of cobalt porphyrin complexes as efficient and cost-effective molecular catalysts for water oxidation has been investigated previously. However, by combining a set of analytical techniques (electrochemistry, ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and synchrotron-based photoelectron spectroscopy (SOXPES and HAXPES)), we have demonstrated that three different cobalt porphyrins, deposited on FTO glasses, decompose promptly into a thin film of CoOx on the surface of the electrode during water oxidation under certain conditions (borate buffer pH 9.2). It is presumed that the film is composed of CoO, only detectable by SOXPES, as conventional techniques are ineffective. This newly formed film has a high turnover frequency (TOF), while the high transparency of the CoOx-based electrode is very promising for future application in photoelectrochemical cells.
  •  
10.
  • Doubaji, Siham, et al. (författare)
  • Passivation Layer and Cathodic Redox Reactions in Sodium-Ion Batteries Probed by HAXPES
  • 2016
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 9:1, s. 97-108
  • Tidskriftsartikel (refereegranskat)abstract
    • The cathode material P2-NaxCo2/3Mn2/9Ni1/9O2, which could be used in Na-ion batteries, was investigated through synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES). Nondestructive analysis was made through the electrode/electrolyte interface of the first electrochemical cycle to ensure access to information not only on the active material, but also on the passivation layer formed at the electrode surface and referred to as the solid permeable interface (SPI). This investigation clearly shows the role of the SPI and the complexity of the redox reactions. Cobalt, nickel, and manganese are all electrochemically active upon cycling between 4.5 and 2.0V; all are in the 4+ state at the end of charging. Reduction to Co3+, Ni3+, and Mn3+ occurs upon discharging and, at low potential, there is partial reversible reduction to Co2+ and Ni2+. A thin layer of Na2CO3 and NaF covers the pristine electrode and reversible dissolution/reformation of these compounds is observed during the first cycle. The salt degradation products in the SPI show a dependence on potential. Phosphates mainly form at the end of the charging cycle (4.5V), whereas fluorophosphates are produced at the end of discharging (2.0V).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 70
Typ av publikation
tidskriftsartikel (63)
konferensbidrag (3)
doktorsavhandling (3)
konstnärligt arbete (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (65)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Rensmo, Håkan (67)
Philippe, Bertrand (16)
Boschloo, Gerrit (13)
Philippe, Bertrand, ... (12)
Johansson, Erik M. J ... (12)
Siegbahn, Hans (11)
visa fler...
Cappel, Ute B. (11)
Karis, Olof (10)
Hahlin, Maria (10)
Phuyal, Dibya (10)
Chen, Hong (8)
Johansson, Erik (7)
Hagfeldt, Anders (7)
Daniel, Quentin (7)
Odelius, Michael (7)
Sun, Licheng (6)
Zhang, Xiaoliang (6)
Oscarsson, Johan (6)
Svanström, Sebastian (6)
Kloo, Lars (5)
Ahmadi, Sareh (5)
Johansson, Malin B., ... (5)
Lindblad, Rebecka (5)
Lindblad, Andreas (4)
Edström, Kristina (4)
Kvashnina, Kristina ... (4)
Edvinsson, Tomas, 19 ... (4)
Ovsyannikov, Ruslan (4)
Giangrisostomi, Erik ... (4)
Park, Byung-Wook (4)
Pazoki, Meysam (3)
Friend, Richard H. (3)
Stranks, Samuel D. (3)
Butorin, Sergei (3)
Wang, Lei (3)
Ahlund, John (3)
Sun, Licheng, 1962- (3)
Gustafsson, Torbjörn (3)
Aitola, Kerttu (3)
Correa-Baena, Juan-P ... (3)
Valvo, Mario (3)
Duda, Laurent (3)
Edvinsson, Tomas (3)
Duan, Lele (3)
Butorin, Sergei M. (3)
Sarma, D. D. (3)
Gorgoi, Mihaela (3)
Safdari, Majid (3)
Gardner, James M. (3)
Liu, Jianhua (3)
visa färre...
Lärosäte
Uppsala universitet (67)
Kungliga Tekniska Högskolan (24)
Stockholms universitet (10)
Lunds universitet (2)
Örebro universitet (1)
Chalmers tekniska högskola (1)
visa fler...
RISE (1)
visa färre...
Språk
Engelska (70)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (67)
Teknik (11)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy