SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roldin Pontus) srt2:(2010-2014)"

Sökning: WFRF:(Roldin Pontus) > (2010-2014)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Nordin, Erik, et al. (författare)
  • Smog Chamber Experiments of SOA Formation from Gasoline Exhaust and Light Aromatics
  • 2010
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Experiments where gasoline exhaust was exposed to UV-radiation to examine Secondary Organic Aerosol (SOA) formation were performed in a smog chamber. The Aerosol Mass Yield (formed SOA/reacted precursor mass) was determined and compared with the yield from a pure precursor experiment in the chamber and from results reported in literature. Preliminary results show that the majority of the organic aerosol mass emitted from idling gasoline cars is secondary. Further, the SOA yields when taking only C6-C10 light aromatics into account are within a similar range to pure precursor experiments, suggesting that light aromatics are dominating precursors in gasoline exhaust SOA.
  •  
5.
  •  
6.
  • Nordin, E. Z., et al. (författare)
  • Secondary organic aerosol formation from gasoline passenger vehicle emissions investigated in a smog chamber
  • 2012
  • Ingår i: Atmospheric Chemistry and Physics Discussions. - : Copernicus Publications. - 1680-7367 .- 1680-7375. ; 12:12, s. 31725-31765
  • Tidskriftsartikel (refereegranskat)abstract
    • Gasoline vehicles have elevated emissions of volatile organic compounds during cold starts and idling and have recently been pointed out as potentially the main source of anthropogenic secondary organic aerosol (SOA) in megacities. However, there is a lack of laboratory studies to systematically investigate SOA formation in real-world exhaust. In this study, SOA formation from pure aromatic precursors, idling and cold start gasoline exhaust from one Euro II, one Euro III and one Euro IV passenger vehicles were investigated using photo-oxidation experiments in a 6 m3 smog chamber. The experiments were carried out at atmospherically relevant organic aerosol mass concentrations. The characterization methods included a high resolution aerosol mass spectrometer and a proton transfer mass spectrometer. It was found that gasoline exhaust readily forms SOA with a signature aerosol mass spectrum similar to the oxidized organic aerosol that commonly dominates the organic aerosol mass spectra downwind urban areas. After 4 h aging the formed SOA was 1–2 orders of magnitude higher than the Primary OA emissions. The SOA mass spectrum from a relevant mixture of traditional light aromatic precursors gave f43 (mass fraction at m/z = 4 3) approximately two times higher than to the gasoline SOA. However O : C and H : C ratios were similar for the two cases. Classical C6–C9 light aromatic precursors were responsible for up to 60% of the formed SOA, which is significantly higher than for diesel exhaust. Important candidates for additional precursors are higher order aromatic compounds such as C10, C11 light aromatics, naphthalene and methyl-naphthalenes.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Poeschl, U., et al. (författare)
  • Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon
  • 2010
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 329:5998, s. 1513-1516
  • Tidskriftsartikel (refereegranskat)abstract
    • The Amazon is one of the few continental regions where atmospheric aerosol particles and their effects on climate are not dominated by anthropogenic sources. During the wet season, the ambient conditions approach those of the pristine pre-industrial era. We show that the fine submicrometer particles accounting for most cloud condensation nuclei are predominantly composed of secondary organic material formed by oxidation of gaseous biogenic precursors. Supermicrometer particles, which are relevant as ice nuclei, consist mostly of primary biological material directly released from rainforest biota. The Amazon Basin appears to be a biogeochemical reactor, in which the biosphere and atmospheric photochemistry produce nuclei for clouds and precipitation sustaining the hydrological cycle. The prevailing regime of aerosol-cloud interactions in this natural environment is distinctly different from polluted regions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy