SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Saeed Mohammed) srt2:(2018)"

Sökning: WFRF:(Saeed Mohammed) > (2018)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Murray, Christopher J. L., et al. (författare)
  • Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1995-2051
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation.
  •  
2.
  •  
3.
  • Pandya, Sharnil, Researcher, 1984-, et al. (författare)
  • Smart Home Anti-Theft System : A Novel Approach for Near Real-Time Monitoring and Smart Home Security for Wellness Protocol
  • 2018
  • Ingår i: Applied System Innovation. - : MDPI. - 2571-5577. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • The proposed research methodology aims to design a generally implementable framework for providing a house owner/member with the immediate notification of an ongoing theft (unauthorized access to their premises). For this purpose, a rigorous analysis of existing systems was undertaken to identify research gaps. The problems found with existing systems were that they can only identify the intruder after the theft, or cannot distinguish between human and non-human objects. Wireless Sensors Networks (WSNs) combined with the use of Internet of Things (IoT) and Cognitive Internet of Things are expanding smart home concepts and solutions, and their applications. The present research proposes a novel smart home anti-theft system that can detect an intruder, even if they have partially/fully hidden their face using clothing, leather, fiber, or plastic materials. The proposed system can also detect an intruder in the dark using a CCTV camera without night vision capability. The fundamental idea was to design a cost-effective and efficient system for an individual to be able to detect any kind of theft in real-time and provide instant notification of the theft to the house owner. The system also promises to implement home security with large video data handling in real-time. The investigation results validate the success of the proposed system. The system accuracy has been enhanced to 97.01%, 84.13, 78.19%, and 66.5%, in scenarios where a detected intruder had not hidden his/her face, hidden his/her face partially, fully, and was detected in the dark from 85%, 64.13%, 56.70%, and 44.01%.
  •  
4.
  • Pilesjo, Petter, et al. (författare)
  • Features of the international MSC educational programme in environmental management and modelling
  • 2018
  • Ingår i: Geodesy and Cartography. - : Vilnius Gediminas Technical University. - 2029-6991 .- 2029-7009. ; 44:4, s. 134-139
  • Tidskriftsartikel (refereegranskat)abstract
    • “International Msc Educational Programme in Environmental Management and Modelling” (GeoNetC) is a European Commission funded project under ERASMUS+: Higher Education – International Capacity Building programme (Project No 561967-EPP-1-2015-1-SE-EPPKA2-CBHE-JP). It began in October 2015 and ended in October 2018. Initiated by the Lund University and partners from the Middle East countries, the GeoNetC project is an ambitious project aiming to match labour market needs with geospatial education offer both in Europe and Middle East countries. The aim of this three-year project is to enable European universities to exchange best practices and innovation with each other and with Middle Eastern universities regarding the mismatch between Europe’s geospatial education and training and the geospatial education in Middle East countries. There is a growing need for well-trained students at all levels – vocational, bachelors, masters – in the field of geospatial technologies. Obviously there is a growing number of jobs available in land surveying, mapping data collection, data processing, data delivery and turning data into information in both European and Middle East countries. Through cooperation, all partners will improve the quality of their respective academic programs. The European partners will make their courses more attractive and well adjusted for students from the Middle East. As well, they will increase the general quality and add state-of-the-art learning components to their offerings, and the partners from the region will significantly increase the academic level and quality in the education they provide. There will be spin-offs into other subjects than environment/Geomatics, since both the pedagogic models developed (e.g. e-Learning) and communication and administrative tools can be used throughout the partner universities. Therefore, this partnership cooperation will be of great value to Partner Countries as well as to Programme Countries. A number of distance learning courses/modules are developed jointly by partner institutions in Europe and the Middle East. The main aim of the network is to promote the use of spatial information and earth observation for environmental management and modelling through capacity building and institutional development, via a network in which all partners would contribute from their own positions of strength. All 13 modules are following EU higher education standards regarding e.g. ECTS, and learning outcomes. The outcome of the project, in terms of courses/modules, will be freely used among the partners, with the possibilities of offering individual courses or a whole MSc programme, whether individually or together. All produced material was evaluated/quality controlled by an external evaluation group of independent experts within environmental management and modelling, higher education, as well as pedagogy.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy