SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schaefer Kevin) "

Sökning: WFRF:(Schaefer Kevin)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Abbott, Benjamin W., et al. (författare)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
3.
  • Aguado, D. S., et al. (författare)
  • The Fifteenth Data Release of the Sloan Digital Sky Surveys : First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library
  • 2019
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 240:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Twenty years have passed since first light for the Sloan Digital Sky Survey (SDSS). Here, we release data taken by the fourth phase of SDSS (SDSS-IV) across its first three years of operation (2014 July-2017 July). This is the third data release for SDSS-IV, and the 15th from SDSS (Data Release Fifteen; DR15). New data come from MaNGA-we release 4824 data cubes, as well as the first stellar spectra in the MaNGA Stellar Library (MaStar), the first set of survey-supported analysis products (e.g., stellar and gas kinematics, emission-line and other maps) from the MaNGA Data Analysis Pipeline, and a new data visualization and access tool we call "Marvin." The next data release, DR16, will include new data from both APOGEE-2 and eBOSS; those surveys release no new data here, but we document updates and corrections to their data processing pipelines. The release is cumulative; it also includes the most recent reductions and calibrations of all data taken by SDSS since first light. In this paper, we describe the location and format of the data and tools and cite technical references describing how it was obtained and processed. The SDSS website (www.sdss.org) has also been updated, providing links to data downloads, tutorials, and examples of data use. Although SDSS-IV will continue to collect astronomical data until 2020, and will be followed by SDSS-V (2020-2025), we end this paper by describing plans to ensure the sustainability of the SDSS data archive for many years beyond the collection of data.
  •  
4.
  • Schuster, Paul F., et al. (författare)
  • Permafrost Stores a Globally Significant Amount of Mercury
  • 2018
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 45:3, s. 1463-1471
  • Tidskriftsartikel (refereegranskat)abstract
    • Changing climate in northern regions is causing permafrost to thaw with major implications for the global mercury (Hg) cycle. We estimated Hg in permafrost regions based on in situ measurements of sediment total mercury (STHg), soil organic carbon (SOC), and the Hg to carbon ratio (R-HgC) combined with maps of soil carbon. We measured a median STHg of 43 +/- 30 ng Hg g soil(-1) and a median R-HgC of 1.6 +/- 0.9 mu g Hg g C-1, consistent with published results of STHg for tundra soils and 11,000 measurements from 4,926 temperate, nonpermafrost sites in North America and Eurasia. We estimate that the Northern Hemisphere permafrost regions contain 1,656 +/- 962 Gg Hg, of which 793 +/- 461 Gg Hg is frozen in permafrost. Permafrost soils store nearly twice as much Hg as all other soils, the ocean, and the atmosphere combined, and this Hg is vulnerable to release as permafrost thaws over the next century. Existing estimates greatly underestimate Hg in permafrost soils, indicating a need to reevaluate the role of the Arctic regions in the global Hg cycle.
  •  
5.
  • The Seventeenth Data Release of the Sloan Digital Sky Surveys : Complete Release of MaNGA, MaStar, and APOGEE-2 Data
  • 2022
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics (IOP). - 0067-0049 .- 1538-4365. ; 259:2
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys.
  •  
6.
  • Abdallah, Jalal, et al. (författare)
  • Study of energy response and resolution of the ATLAS Tile Calorimeter to hadrons of energies from 16 to 30 GeV
  • 2021
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 81:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Three spare modules of the ATLAS Tile Calorimeter were exposed to test beams from the Super Proton Synchrotron accelerator at CERN in 2017. The detector’s measurements of the energy response and resolution to positive pions and kaons, and protons with energies ranging from 16 to 30 GeV are reported. The results have uncertainties of a few percent. They were compared to the predictions of the Geant4-based simulation program used in ATLAS to estimate the response of the detector to proton-proton events at the Large Hadron Collider. The determinations obtained using experimental and simulated data agree within the uncertainties.
  •  
7.
  • Andresen, Christian G., et al. (författare)
  • Soil moisture and hydrology projections of the permafrost region-a model intercomparison
  • 2020
  • Ingår i: Cryosphere. - : Copernicus GmbH. - 1994-0416. ; 14:2, s. 445-459
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigates and compares soil moisture and hydrology projections of broadly used land models with permafrost processes and highlights the causes and impacts of permafrost zone soil moisture projections. Climate models project warmer temperatures and increases in precipitation (P) which will intensify evapotranspiration (ET) and runoff in land models. However, this study shows that most models project a long-term drying of the surface soil (0-20 cm) for the permafrost region despite increases in the net air-surface water flux (P-ET). Drying is generally explained by infiltration of moisture to deeper soil layers as the active layer deepens or permafrost thaws completely. Although most models agree on drying, the projections vary strongly in magnitude and spatial pattern. Land models tend to agree with decadal runoff trends but underestimate runoff volume when compared to gauge data across the major Arctic river basins, potentially indicating model structural limitations. Coordinated efforts to address the ongoing challenges presented in this study will help reduce uncertainty in our capability to predict the future Arctic hydrological state and associated land-atmosphere biogeochemical processes across spatial and temporal scales.
  •  
8.
  • Blomström Lundqvist, Carina, et al. (författare)
  • Impact of non-adherence to direct oral anticoagulants amongst Swedish patients with non-valvular atrial fibrillation: results from a real-world cost-utility analysis
  • 2022
  • Ingår i: Journal of Medical Economics. - : Taylor & Francis. - 1369-6998 .- 1941-837X. ; 25:1, s. 1085-1091
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: A third of non-valvular atrial fibrillation (NVAF) patients are non-adherent to direct oral anticoagulants (DOACs). Estimates of the economic value of full adherence and the cost of two types of adherence improving interventions are important to healthcare planners and decision-makers.Methods: A cost-utility analysis estimated the impact of non-adherence over a 20-year horizon, for a patient cohort with a mean age of 77 years, based on data from the Stockholm Healthcare database of NVAF patients with incident stroke between 2011 and 2018. Adherence was defined using a medication possession ratio (MPR) cut-off of 90%; primary outcomes were the number of ischemic strokes and associated incremental cost–utility ratio.Results: Hypothetical comparisons between cohorts of 1,000 patients with varying non-adherence levels and full adherence (MPR >90%) predicted an additional number of strokes ranging from 117 (MPR = 81–90%) to 866 (MPR <60%), and years of life lost ranging from 177 (MPR = 81– 90%) to 1,318 (MPR < 60%; discounted at 3%). Chronic disease co-management intervention occurring during each DOAC prescription renewal and patient education intervention at DOAC initiation will be cost-saving to the health system if its cost is below SEK 143 and SEK 4,655, and cost-effective if below SEK 858 and SEK 28,665, respectively.Conclusion: Adherence improving interventions for NVAF patients on DOACs such as chronic disease co-management and patient education can be cost-saving and cost-effective, within a range of costs that appear reasonable to the Swedish healthcare system.
  •  
9.
  • Haycock, Philip C., et al. (författare)
  • Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases A Mendelian Randomization Study
  • 2017
  • Ingår i: JAMA Oncology. - : American Medical Association. - 2374-2437 .- 2374-2445. ; 3:5, s. 636-651
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE: The causal direction and magnitude of the association between telomere length and incidence of cancer and non-neoplastic diseases is uncertain owing to the susceptibility of observational studies to confounding and reverse causation. OBJECTIVE: To conduct a Mendelian randomization study, using germline genetic variants as instrumental variables, to appraise the causal relevance of telomere length for risk of cancer and non-neoplastic diseases. DATA SOURCES: Genomewide association studies (GWAS) published up to January 15, 2015. STUDY SELECTION: GWAS of noncommunicable diseases that assayed germline genetic variation and did not select cohort or control participants on the basis of preexisting diseases. Of 163 GWAS of noncommunicable diseases identified, summary data from 103 were available. DATA EXTRACTION AND SYNTHESIS: Summary association statistics for single nucleotide polymorphisms (SNPs) that are strongly associated with telomere length in the general population. MAIN OUTCOMES AND MEASURES: Odds ratios (ORs) and 95% confidence intervals (CIs) for disease per standard deviation (SD) higher telomere length due to germline genetic variation. RESULTS: Summary data were available for 35 cancers and 48 non-neoplastic diseases, corresponding to 420 081 cases (median cases, 2526 per disease) and 1 093 105 controls (median, 6789 per disease). Increased telomere length due to germline genetic variation was generally associated with increased risk for site-specific cancers. The strongest associations (ORs [ 95% CIs] per 1-SD change in genetically increased telomere length) were observed for glioma, 5.27 (3.15-8.81); serous low-malignant-potential ovarian cancer, 4.35 (2.39-7.94); lung adenocarcinoma, 3.19 (2.40-4.22); neuroblastoma, 2.98 (1.92-4.62); bladder cancer, 2.19 (1.32-3.66); melanoma, 1.87 (1.55-2.26); testicular cancer, 1.76 (1.02-3.04); kidney cancer, 1.55 (1.08-2.23); and endometrial cancer, 1.31 (1.07-1.61). Associations were stronger for rarer cancers and at tissue sites with lower rates of stem cell division. There was generally little evidence of association between genetically increased telomere length and risk of psychiatric, autoimmune, inflammatory, diabetic, and other non-neoplastic diseases, except for coronary heart disease (OR, 0.78 [ 95% CI, 0.67-0.90]), abdominal aortic aneurysm (OR, 0.63 [ 95% CI, 0.49-0.81]), celiac disease (OR, 0.42 [ 95% CI, 0.28-0.61]) and interstitial lung disease (OR, 0.09 [ 95% CI, 0.05-0.15]). CONCLUSIONS AND RELEVANCE: It is likely that longer telomeres increase risk for several cancers but reduce risk for some non-neoplastic diseases, including cardiovascular diseases.
  •  
10.
  • Huang, Kun, et al. (författare)
  • Enhanced peak growth of global vegetation and its key mechanisms
  • 2018
  • Ingår i: Nature Ecology and Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 2:12, s. 1897-1905
  • Tidskriftsartikel (refereegranskat)abstract
    • The annual peak growth of vegetation is critical in characterizing the capacity of terrestrial ecosystem productivity and shaping the seasonality of atmospheric CO2 concentrations. The recent greening of global lands suggests an increasing trend of terrestrial vegetation growth, but whether or not the peak growth has been globally enhanced still remains unclear. Here, we use two global datasets of gross primary productivity (GPP) and a satellite-derived Normalized Difference Vegetation Index (NDVI) to characterize recent changes in annual peak vegetation growth (that is, GPPmax and NDVImax). We demonstrate that the peak in the growth of global vegetation has been linearly increasing during the past three decades. About 65% of the NDVImax variation is evenly explained by expanding croplands (21%), rising CO2 (22%) and intensifying nitrogen deposition (22%). The contribution of expanding croplands to the peak growth trend is substantiated by measurements from eddy-flux towers, sun-induced chlorophyll fluorescence and a global database of plant traits, all of which demonstrate that croplands have a higher photosynthetic capacity than other vegetation types. The large contribution of CO2 is also supported by a meta-analysis of 466 manipulative experiments and 15 terrestrial biosphere models. Furthermore, we show that the contribution of GPPmax to the change in annual GPP is less in the tropics than in other regions. These multiple lines of evidence reveal an increasing trend in the peak growth of global vegetation. The findings highlight the important roles of agricultural intensification and atmospheric changes in reshaping the seasonality of global vegetation growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (15)
konferensbidrag (1)
Typ av innehåll
refereegranskat (16)
Författare/redaktör
Schaefer, Kevin (6)
Galbany, Lluís (2)
Schuur, Edward A. G. (2)
McGuire, A. David (2)
Wickland, Kimberly P ... (2)
Aiken, George R. (2)
visa fler...
Hugelius, Gustaf (2)
Striegl, Robert G. (2)
Li, Cheng (2)
Holtzman, Jon A. (2)
Anderson, Scott F. (2)
Andrews, Brett H. (2)
Anguiano, Borja (2)
Aragon-Salamanca, Al ... (2)
Argudo-Fernandez, Ma ... (2)
Avila-Reese, Vladimi ... (2)
Badenes, Carles (2)
Beers, Timothy C. (2)
Belfiore, Francesco (2)
Bernardi, Mariangela (2)
Beutler, Florian (2)
Bizyaev, Dmitry (2)
Blanc, Guillermo A. (2)
Blanton, Michael R. (2)
Bolton, Adam S. (2)
Boquien, Mederic (2)
Borissova, Jura (2)
Bovy, Jo (2)
Brownstein, Joel R. (2)
Bundy, Kevin (2)
Cappellari, Michele (2)
Carrera, Ricardo (2)
Cherinka, Brian (2)
Choi, Peter Doohyun (2)
Chung, Haeun (2)
Comerford, Julia M. (2)
Comparat, Johan (2)
da Costa, Luiz (2)
Covey, Kevin (2)
Darling, Jeremy (2)
Dawson, Kyle (2)
de la Macorra, Axel (2)
de Lee, Nathan (2)
Diamond-Stanic, Alek ... (2)
Donor, John (2)
Dwelly, Tom (2)
Emsellem, Eric (2)
Escoffier, Stephanie (2)
Garcia-Hernandez, D. ... (2)
Grabowski, Kathleen (2)
visa färre...
Lärosäte
Lunds universitet (9)
Umeå universitet (5)
Stockholms universitet (5)
Uppsala universitet (4)
Sveriges Lantbruksuniversitet (3)
Linköpings universitet (2)
visa fler...
Malmö universitet (2)
Göteborgs universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (12)
Medicin och hälsovetenskap (3)
Lantbruksvetenskap (2)
Teknik (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy